You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Many plants have large variations in operating conditions. To ensure smooth running it is essential to find a simple fixed gain controller that guarantees rapidly decaying and well-damped transients for all admissible operating conditions. Robust Control presents design tools, developed by the authors, for the solution of this design problem. Examples of simple and complex cases such as a crane, a flight control problem and the automatic and active four-wheel steering of a car illustrate the use of these tools. This book is intended for anyone who has taken an undergraduate course in feedback control systems and who seeks an advanced treatment of robust control with applications. Drawing on the resources and authoritative research of a leading aerospace institute, it will mainly be of interest to mechanical and electrical engineers in universities, institutes and industrial research centres.
Comprehensive and up to date coverage of robust control theory and its application • Presented in a well-planned and logical way • Written by a respected leading author, with extensive experience in robust control • Accompanying website provides solutions manual and other supplementary material
Self-contained introduction to control theory that emphasizes on the most modern designs for high performance and robustness. It assumes no previous coursework and offers three chapters of key topics summarizing classical control. To provide readers with a deeper understanding of robust control theory than would be otherwise possible, the text incorporates mathematical derivations and proofs. Includes many elementary examples and advanced case studies using MATLAB Toolboxes.
"Recent years have witnessed enormous strides in the field of robust control of dynamical systems -- unfortunately, many of these developments have only been accessible to a small group of experts. In this text for students and control engineers, the authors examines all of these advances, providing an in-depth and exhaustive examination of modern optimal and robust control. "--
Zusammenfassung: Robust and Adaptive Control (second edition) shows readers how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications, the focus of the book is primarily on continuous-time dynamical systems. The two-part text begins with robust and optimal linear control methods and moves on to a self-contained presentation of the design and analysis of model reference adaptive control for nonlinear uncertain dynamical systems. Features of the second edition include: sufficient conditions for closed-loop stability under output feedback observer-based loop-transfer recovery (OBLTR) with adaptive aug...
Shows readers how to exploit the capabilities of the MATLAB® Robust Control and Control Systems Toolboxes to the fullest using practical robust control examples.
This is a unified collection of important recent results for the design of robust controllers for uncertain systems, primarily based on H8 control theory or its stochastic counterpart, risk sensitive control theory. Two practical applications are used to illustrate the methods throughout.
Based upon the popular Robust and Optimal Control by Zhou, et al. (PH, 1995), this book offers a streamlined approach to robust control that reflects the most recent topics and developments in the field. It features coverage of state-of-the-art topics, including gap metric, v-gap metric, model validation, and real mu.
This "Robust Control" course consists of 25 lectures aimed at graduate students in Electrical and Mechanical Engineering. It focuses on how modern robust control theory addresses real-world problems. Robustness is defined by three requirements: the plant model may be inexact or uncertain, the system must handle external perturbations, and the controller should be simple for easy implementation. The course is divided into five parts: Mathematical Background and Linear Matrix Inequalities in Control Theory, Absolute Stability and H1-Control, Attractive Ellipsoid Method (AEM), Sliding Mode Control (SMC), and Engineering Examples. Topics include conditions for LMI solutions, Schur’s lemma extension, dynamic feedback controller design using AEM, robust control for time-delay systems, Sampled-Data and Quantized Output systems, SMC methods, and Absolute Stability analysis. This course complements existing resources and provides practical tools for feedback design.