You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume captures the contents of the talks given at the Workshop on Applications of High Intensity Proton Accelerators held at Fermilab Oct 19ndash;21, 2009. This workshop brought together experts from a variety of disciplines to explore new and profound ways proton accelerators can be used in the future. The workshop explored uses of such a proton source for producing intense muon, kaon and neutrino beams as well as using the intense protons for new forms of nuclear reactors that go by the name Accelerator Driven Sub-critical systems that promise to increase our available nuclear fuel supply by orders of magnitude while at the same time solving the nuclear waste problem. Intense proton beams can also be used to produce short-lived nuclear isotopes that are important in the medical industry.
Particle accelerators have attracted much interest and expectation from the international scientific community, and these show no sign of diminishing. Major world research laboratories have either planned or are envisaging the construction of new accelerators in order to foster the progress of science in many fields, from high energy physics to cultural heritage and the environment. This book presents 13 papers from the workshop "Future Research Infrastructures; Challenges and Opportunities", held as part of the series of the Enrico Fermi International School of Physics in Varenna, Italy, in July 2015. The workshop combined presentations on the science of particle accelerators and their applications with talks on the development of future accelerators, and the papers included here cover a diverse range of topics including: the European Spallation Source; the Swiss Light Source; accelerator projects in Korea; future circular colliders; synchrotron-based techniques for cultural heritage; and the new research horizon in hadron therapy. The book also includes a summary of the panel discussion on the need for international world infrastructures.
The Thorium Energy Conference (ThEC13) gathered some of the world’s leading experts on thorium technologies to review the possibility of destroying nuclear waste in the short term, and replacing the uranium fuel cycle in nuclear systems with the thorium fuel cycle in the long term. The latter would provide abundant, reliable and safe energy with no CO2 production, no air pollution, and minimal waste production. The participants, representatives of 30 countries, included Carlo Rubbia, Nobel Prize Laureate in physics and inventor of the Energy Amplifier; Jack Steinberger, Nobel Prize Laureate in physics; Hans Blix, former Director General of the International Atomic Energy Agency (IAEA); Rol...
The past 100 years of accelerator-based research have led the field from first insights into the structure of atoms to the development and confirmation of the Standard Model of physics. Accelerators have been a key tool in developing our understanding of the elementary particles and the forces that govern their interactions. This book describes the past 100 years of accelerator development with a special focus on the technological advancements in the field, the connection of the various accelerator projects to key developments and discoveries in the Standard Model, how accelerator technologies open the door to other applications in medicine and industry, and finally presents an outlook of future accelerator projects for the coming decades.
The 20th ICFA Advanced Beam Dynamics Workshop took place from April 8 to 12, 2002 at Fermilab, co-sponsored by Fermilab and KEK. The theme of this workshop was "High Intensity and High Brightness Hadron Beams". The workshop covered a broad range of topics associated with such beams, including reviews of the performance of existing high-intensity hadron machines, overviews of planned high-intensity hadron sources and projects, presentations on accelerator physics issues, technical systems designs, and applications of these beams in high energy physics, nuclear physics, heavy ion fusion, medicine, industry, and other fields.
None
The motivation to conceive and build accelerators comes from a most fundamental need of man — to understand and control the world around us. With beams and their associated accelerators, scientists and engineers can gain understanding of the nature of matter and modify matter, which is not possible by other means. The areas already influenced by the developments in accelerator technology are high energy and nuclear physics, atomic and molecular physics, condensed matter physics and the biological sciences. There are also a growing number of applications in medicine and industry.This book summarizes all the currently available knowledge on the rf technology driving the development of particle beams for science, medicine and industry. It is a unique collection of information on this technology.
Cd-ROM contains: electronic version of AIP Conference Proceedings found in text.
This book begins with an overview of the RF control concepts and strategies. It then introduces RF system models for optimizing the system parameters to satisfy beam requirements and for controller design. In addition to systematically discussing the RF field control algorithms, it presents typical architecture and algorithms for RF signal detection and actuation. Further, the book addresses the analysis of the noise and nonlinearity in LLRF systems to provide a better understanding of the performance of the RF control system and to specify the performance requirements for different parts of the RF system. Today, accelerators require increased RF stability and more complex operation scenario...