You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Quantum Field Theory has become the universal language of most modern theoretical physics. This introductory textbook shows how this beautiful theory offers the correct mathematical framework to describe and understand the fundamental interactions of elementary particles. The book begins with a brief reminder of basic classical field theories, electrodynamics and general relativity, as well as their symmetry properties, and proceeds with the principles of quantisation following Feynman's path integral approach. Special care is used at every step to illustrate the correct mathematical formulation of the underlying assumptions. Gauge theories and the problems encountered in their quantisation are discussed in detail. The last chapters contain a full description of the Standard Model of particle physics and the attempts to go beyond it, such as grand unified theories and supersymmetry. Written for advanced undergraduate and beginning graduate students in physics and mathematics, the book could also serve as a reference for active researchers in the field.
This long-awaited update of Meyer's Wavelets: Algorithms and Applications includes completely new chapters on four topics: wavelets and the study of turbulence, wavelets and fractals (which includes an analysis of Riemann's nondifferentiable function), data compression, and wavelets in astronomy. The chapter on data compression was the original motivation for this revised edition, and it contains up-to-date information on the interplay between wavelets and nonlinear approximation. The other chapters have been rewritten with comments, references, historical notes, and new material. Four appendices have been added: a primer on filters, key results (with proofs) about the wavelet transform, a complete discussion of a counterexample to the Marr-Mallat conjecture on zero-crossings, and a brief introduction to H?lder and Besov spaces. In addition, all of the figures have been redrawn, and the references have been expanded to a comprehensive list of over 260 entries. The book includes several new results that have not appeared elsewhere.
Combining research methods from various areas of mathematics and physics, Probabilistic Models of Cosmic Backgrounds describes the isotropic random sections of certain fiber bundles and their applications to creating rigorous mathematical models of both discovered and hypothetical cosmic backgrounds. Previously scattered and hard-to-find mathematical and physical theories have been assembled from numerous textbooks, monographs, and research papers, and explained from different or even unexpected points of view. This consists of both classical and newly discovered results necessary for understanding a sophisticated problem of modelling cosmic backgrounds. The book contains a comprehensive des...
The contributions to this volume deal with topics ranging over constructive and general quantum field theory and related algebraic problems, non-renormalizable models, equilibrium sta tistical mechanics, critical phenomena, and nonlinear equations modelling the onset of turbulence. They are based on lectures intended to provide the 1975/1976 research group "Mathematical Problems of Quantum Dynamics" at the Centre for Interdisciplinary Research (ZiF) of Bielefeld University with an input reflecting important recent develop ments and presented by leading experts in the pertinent fields of research. They further reflect a situation of unusually active and fruit ful exchange not. only between va...
A century after their discovery, phosphonates have become important compounds recognized both for their use as efficient reagents in organic synthesis and for their biological and industrial importance. This unique, up-to-date reference presents a concise summary of the state of the art in phosphonate chemistry, covering the role of phosphonates in
Multi-author volume on the history and philosophy of physics.
Mathematical physics has made enormous strides over the past few decades, with the emergence of many new disciplines and with revolutionary advances in old disciplines. One of the especially interesting features is the link between developments in mathematical physics and in pure mathematics. Many of the exciting advances in mathematics owe their origin to mathematical physics — superstring theory, for example, has led to remarkable progress in geometry — while very pure mathematics, such as number theory, has found unexpected applications.The beginning of a new millennium is an appropriate time to survey the present state of the field and look forward to likely advances in the future. In this book, leading experts give personal views on their subjects and on the wider field of mathematical physics. The topics covered range widely over the whole field, from quantum field theory to turbulence, from the classical three-body problem to non-equilibrium statistical mechanics.
This book presents quantum theory as a theory based on new relationships among matter, thought, and experimental technology, as against those previously found in physics, relationships that also redefine those between mathematics and physics in quantum theory. The argument of the book is based on its title concept, reality without realism (RWR), and in the corresponding view, the RWR view, of quantum theory. The book considers, from this perspective, the thinking of Bohr, Heisenberg, Schrödinger, and Dirac, with the aim of bringing together the philosophy and history of quantum theory. With quantum theory, the book argues, the architecture of thought in theoretical physics was radically changed by the irreducible role of experimental technology in the constitution of physical phenomena, accordingly, no longer defined independently by matter alone, as they were in classical physics or relativity. Or so it appeared. For, quantum theory, the book further argues, made us realize that experimental technology, beginning with that of our bodies, irreducibly shapes all physical phenomena, and thus makes us rethink the relationships among matter, thought, and technology in all of physics.
This engaging introduction to the latest theoretical advances and experimental discoveries in elementary particle physics, culminating in the development of the 'Standard Model', makes this fascinating subject accessible to undergraduate students and aims at motivating them to study it further.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.