You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
All needed notions are developed within the book: with the exception of fundamentals which are presented in introductory lectures, no other knowledge is assumed Provides a more in-depth introduction to the subject than other existing books in this area Over 400 exercises including hints for solutions are included
The book contains a complete self-contained introduction to highlights of classical complex analysis. New proofs and some new results are included. All needed notions are developed within the book: with the exception of some basic facts which can be found in the ̄rst volume. There is no comparable treatment in the literature.
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular functions and its modern version using the structure of the Lie algebra of SL(2,R).
'This book could serve either as a good reference to remind students about what they have seen in their completed courses or as a starting point to show what needs more investigation. Svozil (Vienna Univ. of Technology) offers a very thorough text that leaves no mathematical area out, but it is best described as giving a synopsis of each application and how it relates to other areas … The text is organized well and provides a good reference list. Summing Up: Recommended. Upper-division undergraduates and graduate students.'CHOICEThis book contains very explicit proofs and demonstrations through examples for a comprehensive introduction to the mathematical methods of theoretical physics. It also combines and unifies many expositions of this subject, suitable for readers with interest in experimental and applied physics.
Includes entries for maps and atlases.
None
Die Analysis findet ihre Vollendung in der komplexen Funktionentheorie, die durch ihre Kraft, Eleganz und Geschlossenheit besticht. Manche Rätsel aus dem Reellen können damit aufgelöst werden, manch schwierige Integrationsaufgabe wird dank neuer, mächtiger Hilfsmittel zum Kinderspiel. Der „Grundkurs Funktionentheorie" präsentiert in seinen ersten drei Kapiteln (Holomorphe Funktionen, Integration im Komplexen und isolierte Singularitäten) ohne Umwege die wichtigsten Elemente der komplexen Analysis von einer Veränderlichen, vom Rechnen mit komplexen Zahlen über die Grundzüge der verblüffend wirkungsvollen Cauchy-Theorie bis hin zum Residuensatz. Ausgerüstet mit diesen Werkzeugen e...