You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Phylogenetics emerged in the second half of the nineteenth century as a speculative storytelling discipline dedicated to providing narrative explanations for the evolution of taxa and their traits. It coincided with lineage thinking, a process that mentally traces character evolution along lineages of hypothetical ancestors. Ancestors in Evolutionary Biology traces the history of narrative phylogenetics and lineage thinking to the present day, drawing on perspectives from the history of science, philosophy of science, and contemporary scientific debates. It shows how the power of phylogenetic hypotheses to explain evolution resides in the precursor traits of hypothetical ancestors. This book provides a comprehensive exploration of the topic of ancestors, which is central to modern biology, and is therefore of interest to graduate students, researchers, and academics in evolutionary biology, palaeontology, philosophy of science, and the history of science.
Venom brings readers face to face with some of the most dangerous creatures on the planet, including jellyfish, snakes, and wasps, as it uncovers the story of venom. The book explores how venom is used for predation, defense, competition, and communication by an incredible diversity of species. It examines the unique methods that these species have evolved to create and deliver their deadly toxins. The book traces venom back to its origin in early jellyfish and sea anemones, and reveals how venoms have evolved dozens of times independently all across the animal kingdom since that time. And finally, it examines the relationships between these dangerous creatures and humans. Humans have not only learned to live with them, but also to benefit from them: scientists increasingly are harnessing the power of venom to create new drugs, treatments, and anti-venoms.
Compared to other arthropods, crustaceans are characterized by an unparalleled disparity of body plans. Traditionally, the specialization of arthropod segments and appendages into distinct body regions has served as a convenient basis for higher classification; however, many relationships within the phylum Arthropoda still remain controversial.
Everybody's favorite "momager," the businesswoman behind the Kardashian empire, shares her never-before-told story.
Evolutionary developmental biology, or 'evo-devo', is the study of the relationship between evolution and development. Dealing specifically with the generative mechanisms of organismal form, evo-devo goes straight to the core of the developmental origin of variation, the raw material on which natural selection (and random drift) can work. Evolving Pathways brings together contributions that represent a diversity of approaches. Topics range from developmental genetics to comparative morphology of animals and plants alike, and also include botany and palaeontology, two disciplines for which the potential to be examined from an evo-devo perspective has largely been ignored until now. Researchers and graduate students will find this book a valuable overview of current research as we begin to fill a major gap in our perception of evolutionary change.
This new edition of a foundational text presents a contemporary review of cladistics, as applied to biological classification. It provides a comprehensive account of the past fifty years of discussion on the relationship between classification, phylogeny and evolution. It covers cladistics in the era of molecular data, detailing new advances and ideas that have emerged over the last twenty-five years. Written in an accessible style by internationally renowned authors in the field, readers are straightforwardly guided through fundamental principles and terminology. Simple worked examples and easy-to-understand diagrams also help readers navigate complex problems that have perplexed scientists for centuries. This practical guide is an essential addition for advanced undergraduates, postgraduates and researchers in taxonomy, systematics, comparative biology, evolutionary biology and molecular biology.
Animal life, now and over the past half billion years, is incredibly diverse. Describing and understanding the evolution of this diversity of body plans - from vertebrates such as humans and fish to the numerous invertebrate groups including sponges, insects, molluscs, and the many groups of worms - is a major goal of evolutionary biology. In this book, a group of leading researchers adopt a modern, integrated approach to describe how current molecular genetic techniques and disciplines as diverse as palaeontology, embryology, and genomics have been combined, resulting in a dramatic renaissance in the study of animal evolution. The last decade has seen growing interest in evolutionary biolog...
Current state of play in astrobiology, including exoplanets and their atmospheres, habitable zones and the likelihood of evolution elsewhere.