You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The presence of modified nucleotides in cellular RNAs has been known for decades and over 100 distinct RNA modifications have been characterized to date. While the exact role of many of these modifications is still unclear, many are highly conserved across evolution and most contribute to the overall fitness of the organism. In recent years, new methods and bioinformatics approaches have been developed for the dissection of modification pathways and functions. These methods intersect a number of related fields, ranging from RNA processing to comparative genomics and systems biology. In addition, many of the techniques described in this volume have broad applicability, particularly in regards to the isolation, characterization, and reconstitution of ribonucleoprotein complexes, expanding the experimental repertoire available to all RNA researchers.
Focuses on particular aspects of the so-called Phase II of drug detoxication, which has important ramifications for endogenous metabolism and nutrition. This volume on glutathione transferases and gamma-glutamyl transpeptidases serves to bring together methods and concepts in a rapidly developing field of cell and systems biology.
The aim of Numerical Computer Methods, Part D is to brief researchers of the importance of data analysis in enzymology, and of the modern methods that have developed concomitantly with computer hardware. It is also to validate researchers' computer programs with real and synthetic data to ascertain that the results produced are what they expected. Selected Contents: Prediction of protein structure Modeling and studying proteins with molecular dynamics Statistical error in isothermal titration calorimetry Analysis of circular dichroism data Model comparison methods
The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today-truly an essential publication for researchers in all fields of life sciences.
DNA in the nucleus of plant and animal cells is stored in the form of chromatin. Chromatin and the chromatin remodelling enzymes play an important role in gene transcription. - Genetic assays of chromatin modification and remodeling - Histone modifying enzymes - ATP-dependent chromatin remodeling enzymes
This first of two volumes provides up-to-date, methods-related information on ribonuclease functions, assays, and applications. Chapter topics include the identification of, characterization of, and assays for secreted ribonucleases; viral ribonucleases, artificial and engineered ribonucleases, and ribozymes.The critically acclaimed laboratory standard for more than forty years, Methods in Enzymology is one of the most highly respected publications in the field of biochemistry. Since 1955, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now with more than 300 volumes (all of them still in print), the series contains much material still relevant today--truly an essential publication for researchers in all fields of life sciences.
In the past decade, there has been an explosion of progress in understanding the roles of carbohydrates in biological systems. This explosive progress was made with the efforts in determining the roles of carbohydrates in immunology, neurobiology and many other disciplines, examining each unique system and employing new technology. This volume represents the second of three in the Methods in Enzymology series, including Glycobiology (vol. 415) and Functional Glycomics (vol. 417), dedicated to disseminating information on methods in determining the biological roles of carbohydrates. These books are designed to provide an introduction of new methods to a large variety of readers who would like to participate in and contribute to the advancement of glycobiology. The methods covered include structural analysis of carbohydrates, biological and chemical synthesis of carbohydrates, expression and determination of ligands for carbohydrate-binding proteins, gene expression profiling including micro array, and generation of gene knockout mice and their phenotype analyses.
This volume of Methods in Enzymology is a companion to Volume 347 and addresses direct sensing of reactive oxygen species and related free radicals by thiol enzymes and proteins.
In the past decade, there has been an explosion of progress in understanding the roles of carbohydrates in biological systems. This explosive progress was made with the efforts in determining the roles of carbohydrates in immunology, neurobiology and many other disciplines, examining each unique system and employing new technology. This volume represents the second of three in the Methods in Enzymology series, including Glycobiology (vol. 415) and Glycomics (vol. 416), dedicated to disseminating information on methods in determining the biological roles of carbohydrates. These books are designed to provide an introduction of new methods to a large variety of readers who would like to participate in and contribute to the advancement of glycobiology. The methods covered include structural analysis of carbohydrates, biological and chemical synthesis of carbohydrates, expression and determination of ligands for carbohydrate-binding proteins, gene expression profiling including micro array, and generation of gene knockout mice and their phenotype analyses.
This third volume in the trio covering G proteins, features integrated approaches to studying G proteins. Methods pertaining to signaling mechanisms are presented, including theoretical and modeling approaches, biochemistry and molecular biology, and cell biology and physiology. The techniques for studying the structure and function of G proteins are important not only to those with specific research interests in them, but also endocrinologists and pharmacologists conducting research on signaling mechanisms that are increasingly understood to interact with G proteins.