You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Plasma Physics: Confinement, Transport and Collective Effects provides an overview of modern plasma research with special focus on confinement and related issues. Beginning with a broad introduction, the book leads graduate students and researchers – also those from related fields - to an understanding of the state-of-the-art in modern plasma physics. Furthermore, it presents a methodological cross section ranging from plasma applications and plasma diagnostics to numerical simulations, the latter providing an increasingly important link between theory and experiment. Effective references guide the reader from introductory texts through to contemporary research. Some related exercises in computational plasma physics are supplied on a special web site
This book addresses and reviews many of the still little understood questions related to the processes underlying planetary magnetic fields and their interaction with the solar wind. With focus on research carried out within the German Priority Program ”PlanetMag”, it also provides an overview of the most recent research in the field. Magnetic fields play an important role in making a planet habitable by protecting the environment from the solar wind. Without the geomagnetic field, for example, life on Earth as we know it would not be possible. And results from recent space missions to Mars and Venus strongly indicate that planetary magnetic fields play a vital role in preventing atmospheric erosion by the solar wind. However, very little is known about the underlying interaction between the solar wind and a planet’s magnetic field. The book takes a synergistic interdisciplinary approach that combines newly developed tools for data acquisition and analysis, computer simulations of planetary interiors and dynamos, models of solar wind interaction, measurement of ancient terrestrial rocks and meteorites, and laboratory investigations.
Authored by a well-known expert in the field of nonequilibrium statistical physics, this book is a coherent presentation of the subject suitable for masters and PhD students, as well as postdocs in physics and related disciplines. Starting from a general discussion of irreversibility and entropy, the method of nonequilibrium statistical operator is presented as a general concept. Stochastic processes are introduced as a necessary prerequisite to describe the evolution of a nonequilibrium state. Different standard approaches such as master equations, kinetic equations and linear response theory, are derived after special assumptions. This allows for an insight into the problems of nonequilibrium physics, a discussion of the limits of the approaches, and suggestions for improvements. The method of thermodynamic Green's function is outlined that allows for the systematic quantum statistical treatment of many-body systems. Applications and typical examples are given, as well as fully worked problems.
The International Conference on Strongly Coupled Coulomb Systems was held on the campus of Boston College in Newton, Massachusetts, August 3–10, 1997. Although this conference was the first under a new name, it was the continuation of a series of international meetings on strongly coupled plasmas and other Coulomb systems that started with the NATO Summer Institute on Strongly Coupled Plasmas, almost exactly twenty years prior to this conference, in July of 1977 in Orleans la Source, France. Over the intervening period the field of strongly coupled plasmas has developed vigorously. In the 1977 meeting the emphasis was on computer (Monte Carlo and molecular dynamics) simulations which provi...
This book presents quantum kinetic theory in a comprehensive way. The focus is on density operator methods and on non-equilibrium Green functions. The theory allows to rigorously treat nonequilibrium dynamics in quantum many-body systems. Of particular interest are ultrafast processes in plasmas, condensed matter and trapped atoms that are stimulated by rapidly developing experiments with short pulse lasers and free electron lasers. To describe these experiments theoretically, the most powerful approach is given by non-Markovian quantum kinetic equations that are discussed in detail, including computational aspects.
Various exploration in astrophysics has revealed many breakthroughs nowadays, not only with respect to James Webb Telescope, but also recent finding related to water and ice deposits in the Moon surface. Those new findings seem to bring us to new questions related to origin of Earth, Moon and the entire Universe.
This work presents one of the most powerful methods of plasma diagnosis in exquisite detail, to guide researchers in the theory and measurement techniques of light scattering in plasmas. Light scattering in plasmas is essential in the research and development of fusion energy, environmental solutions, and electronics.Referred to as the "Bible" by researchers, the work encompasses fusion and industrial applications essential in plasma research. It is the only comprehensive resource specific to the plasma scattering technique. It provides a wide-range of experimental examples and discussion of their principles with worked examples to assist researchers in applying the theory. - Computing techniques for solving basic equations helps researchers compare data to the actual experiment - New material on advances on the experimental side, such as the application of high density plasmas of inertial fusion - Worked out examples of the scattering technique for easier comprehension of theory
This series on condensed matter theories provides a forum for advanced theoretical research in quantum many-body theory. The contributions are highly interdisciplinary, emphasizing common concerns among theorists who apply many-particle methods in such diverse areas as solid-state, low-temperature, statistical, nuclear, particle, and biological physics, as well as in quantum field theory, quantum information and the theory of complex systems. Each individual contribution is preceded by an extended introduction to the topic treated. Useful details not normally presented in journal articles can be found in this volume. Sample Chapter(s). Part A: Fermi Liquids: Pressure Comparison Between the S...
Documents in comprehensive detail a major environmental crisis: rapidly declining amphibian populations and the disturbing developmental problems that are increasingly prevalent within many amphibian species.
This book presents recently developed computational approaches for the study of reactive materials under extreme physical and thermodynamic conditions. It delves into cutting edge developments in simulation methods for reactive materials, including quantum calculations spanning nanometer length scales and picosecond timescales, to reactive force fields, coarse-grained approaches, and machine learning methods spanning microns and nanoseconds and beyond. These methods are discussed in the context of a broad range of fields, including prebiotic chemistry in impacting comets, studies of planetary interiors, high pressure synthesis of new compounds, and detonations of energetic materials. The book presents a pedagogical approach for these state-of-the-art approaches, compiled into a single source for the first time. Ultimately, the volume aims to make valuable research tools accessible to experimentalists and theoreticians alike for any number of scientific efforts, spanning many different types of compounds and reactive conditions.