You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Atomically precise metal nanocluster research has emerged as a new frontier. This book serves as an introduction to metal nanoclusters protected by ligands. The authors have summarized the synthesis principles and methods, the characterization methods and new physicochemical properties, and some potential applications. By pursuing atomic precision, such nanocluster materials provide unprecedented opportunities for establishing precise relationships between the atomic-level structures and the properties. The book should be accessible to senior undergraduate and graduate students, researchers in various fields (e.g., chemistry, physics, materials, biomedicine, and engineering), R&D scientists, and science policy makers.
Explore recent progress and developments in atomically precise nanochemistry Chemists have long been motivated to create atomically precise nanoclusters, not only for addressing some fundamental issues that were not possible to tackle with imprecise nanoparticles, but also to provide new opportunities for applications such as catalysis, optics, and biomedicine. In Atomically Precise Nanochemistry, a team of distinguished researchers delivers a state-of-the-art reference for researchers and industry professionals working in the fields of nanoscience and cluster science, in disciplines ranging from chemistry to physics, biology, materials science, and engineering. A variety of different nanocl...
Atomically precise metal nanocluster research has emerged as a new frontier. This book serves as an introduction to metal nanoclusters protected by ligands. The authors have summarized the synthesis principles and methods, the characterization methods and new physicochemical properties, and some potential applications. By pursuing atomic precision, such nanocluster materials provide unprecedented opportunities for establishing precise relationships between the atomic-level structures and the properties. The book should be accessible to senior undergraduate and graduate students, researchers in various fields (e.g., chemistry, physics, materials, biomedicine, and engineering), R&D scientists, and science policy makers.
Atomically precise metal nanoclusters occupy the gap between discrete atoms and plasmonic nanomaterials, and they offer intriguing physical-chemical properties that can be rationalized in terms of their quantum size effects and discrete electronic states. The atomically precise nature of their structures lends them well to structure-property relationship elucidation, making them particularly useful for informing the rational design of nanoclusters with enhanced performance. Metal Nanocluster Chemistry: Ligand-Protected Metal Nanoclusters With Atomic Precision provides a concise introduction to the study of these useful nanoclusters. Beginning with an introduction to the fundamental concepts ...
The primary goal of nanotechnology is to achieve nanoscale materials and devices with atomic precision. Toward this goal, breakthroughs have recently been made in the solution-phase synthesis and applications of atomically precise nanoclusters. This book presents the exciting progress in this new research field. The chapters are contributed by leading experts of the field and cover the synthetic methods, atomic structures, electronic and optical properties, and catalytic applications of noble metal nanoclusters. Such new nanocluster materials offer exciting opportunities for chemists and physicists to understand the fundamental science of nanoclusters, especially the atomic-level structure–property correlation and design of new materials, as well as for developing a range of applications including catalysis, biomedicine, sensing, imaging, optics, and energy conversion. The book will be of interest to readers and researchers in nanotechnology, nanochemistry, catalysis, and computational chemistry, as well as practitioners in industry R&D for new materials. It is written to be accessible to undergraduate and graduate students and, therefore, is an excellent teaching material.
Spherical nucleic acids (SNAs) comprise a nanoparticle core, and a densely packed and highly oriented nucleic acid shell. They have novel structure-dependent properties that differ from those of linear nucleic acids and that makes them useful in chemistry, biology, the life sciences, medicine, materials science, and engineering. This book is a reprint volume that compiles 101 key papers that have been published by the Mirkin Group at Northwestern University, USA, and their collaborators over the past more than two decades. Volume 1 provides an overview and a historical framework of SNAs and discusses their enabling features, which set them apart from all other forms of matter. Volume 2 cover...
This volume provides a balanced and in-depth review of the modern approaches to some of the challenges faced by industrialists and academics seeking cost effective and environmentally sound catalysts.
With techniques bridging the gap between surface science and heterogeneous catalysis the book presents a tool-kit for anyone wishing to prepare and define solid catalysts.
In recent years, we have witnessed a rapid expansion of using super-thin metasurfaces to manipulate light or electromagnetic wave in a subwavelength scale. However, most designs are confined to a passive scheme and monofunctional operation, which hinders considerably the promising applications of the metasurfaces. Specifically, the tunable and multifunctional metasurfaces enable to facilitate switchable functionalities and multiple functionalities which are extremely essential and useful for integrated optics and microwaves, well alleviating aforementioned issues. In this book, we introduce our efforts in exploring the physics principles, design approaches, and numerical and experimental dem...