You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
With the development of Big Data platforms for managing massive amount of data and wide availability of tools for processing these data, the biggest limitation is the lack of trained experts who are qualified to process and interpret the results. This textbook is intended for graduate students and experts using methods of cluster analysis and applications in various fields. Suitable for an introductory course on cluster analysis or data mining, with an in-depth mathematical treatment that includes discussions on different measures, primitives (points, lines, etc.) and optimization-based clustering methods, Cluster Analysis and Applications also includes coverage of deep learning based clustering methods. With clear explanations of ideas and precise definitions of concepts, accompanied by numerous examples and exercises together with Mathematica programs and modules, Cluster Analysis and Applications may be used by students and researchers in various disciplines, working in data analysis or data science.
This book brings together contributed papers presenting new results covering different areas of applied mathematics and scientific computing. Firstly, four invited lectures give state-of-the-art presentations in the fields of numerical linear algebra, shape preserving approximation and singular perturbation theory. Then an overview of numerical solutions to skew-Hamiltonian and Hamiltonian eigenvalue problems in system and control theory is given by Benner, Kressner and Mehrmann. The important issue of structure preserving algorithms and structured condition numbers is discussed. Costantini and Sampoli review the basic ideas of the abstract schemes and show that they can be used to solve any...
Signal Processing and Machine Learning Theory, authored by world-leading experts, reviews the principles, methods and techniques of essential and advanced signal processing theory. These theories and tools are the driving engines of many current and emerging research topics and technologies, such as machine learning, autonomous vehicles, the internet of things, future wireless communications, medical imaging, etc. - Provides quick tutorial reviews of important and emerging topics of research in signal processing-based tools - Presents core principles in signal processing theory and shows their applications - Discusses some emerging signal processing tools applied in machine learning methods - References content on core principles, technologies, algorithms and applications - Includes references to journal articles and other literature on which to build further, more specific, and detailed knowledge
This volume can be divided into two parts: a purely mathematical part with contributions on finance mathematics, interactions between geometry and physics and different areas of mathematics; another part on the popularization of mathematics and the situation of women in mathematics.
This book includes 57 papers presented at the SOCO 2019 conference held in the historic city of Seville (Spain), in May 2019. Soft computing represents a set of computational techniques in machine learning, computer science and various engineering disciplines, which investigate, simulate, and analyze very complex issues and phenomena. The selection of papers was extremely rigorous in order to maintain the high quality of the conference, which featured a number of special sessions, including sessions on: Soft Computing Methods in Manufacturing and Management Systems; Soft Computing Applications in the Field of Industrial and Environmental Enterprises; Optimization, Modeling and Control by Soft Computing Techniques; and Soft Computing in Aerospace, Mechanical and Civil Engineering: New methods and Industrial Applications.
None
None
None
Olinick’s Mathematical Models in the Social and Life Sciences concentrates not on physical models, but on models found in biology, social science, and daily life. This text concentrates on a relatively small number of models to allow students to study them critically and in depth, and balances practice and theory in its approach. Each chapter concluded with suggested projects that encourage students to build their own models, and space is set aside for historical and biographical notes about the development of mathematical models.