You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This graduate textbook describes the physics of the Cosmic Microwave Background, arguably the most important topic in modern cosmology.
Graduate textbook examining the theory of the cosmic microwave background and its recent progress.
Are we living in the "golden age" of cosmology? Are we close to understanding the nature of the unknown ingredients of the currently most accepted cosmological model and the physics of the early Universe? Or are we instead approaching a paradigm shift? What is dark matter and does it exist? How is it distributed around galaxies and clusters? Is the scientific community open to alternative ideas that may prompt a new scientific revolution - as the Copernican revolution did in Galileo's time? Do other types of supernovae exist that can be of interest for cosmology? Why have quasars never been effectively used as standard candles? Can you tell us about the scientific adventure of COBE? How does...
This book provides an extensive survey of all the physics necessary to understand the current developments in the field of fundamental cosmology, as well as an overview of the observational data and methods. It will help students to get into research by providing definitions and main techniques and ideas discussed today. The book is divided into three parts. Part 1 summarises the fundamentals in theoretical physics needed in cosmology (general relativity, field theory, particle physics). Part 2 describes the standard model of cosmology and includes cosmological solutions of Einstein equations, the hot big bang model, cosmological perturbation theory, cosmic microwave background anisotropies,...
This volume, the fourteenth in the Space Sciences Series of ISS/, is dedicated to the matter in the universe, which was the topic of a workshop organized by ISSI from 19 to 22 March 2001 in Bern. The aim of the meeting was to gather ac tive researchers from various fields (cosmology, astrophysics, nuclear and particle physics as well as space science) to asses the exciting new developments in the search for abundant and yet unknown forms of matter in the universe. Due to the importance of the field and the rapid developments which are taking place ISSI decided to organize a workshop on matter in the universe and invited nine convenors, John Ellis, Johannes Geiss, Philippe Jetzer, Heinrich Le...
The ancient Greeks believed that everything in the Universe should be describable in terms of geometry. This thesis takes several steps towards realising this goal by introducing geometric descriptions of systems such as quantum gravity, fermionic particles and the origins of the Universe itself. The author extends the applicability of previous work by Vilkovisky, DeWitt and others to include theories with spin 1⁄2 and spin 2 degrees of freedom. In addition, he introduces a geometric description of the potential term in a quantum field theory through a process known as the Eisenhart lift. Finally, the methods are applied to the theory of inflation, where they show how geometry can help answer a long-standing question about the initial conditions of the Universe. This publication is aimed at graduate and advanced undergraduate students and provides a pedagogical introduction to the exciting topic of field space covariance and the complete geometrization of quantum field theory.
Topological defects have recently become of great interest in condensed matter physics, particle physics and cosmology. They are the unavoidable remnants of many symmetry breaking phase transitions. Topological defects can play an important role in describing the properties of many condensed matter systems (e.g. superfluids and superconduc tors); they can catalyze many unusual effects in particle physics models and they may be responsible for seeding the density perturbations in the early Universe which de velop into galaxies and the large-scale structure of the Universe. Topological defects are also of great interest in mathematics as nontrivial solutions of nonlinear differential equations stabilized by topological effects. The purpose of the Advanced Study Institute "Formation and Interactions of Topo logical Defects" was to bring together students and practitioners in condensed matter physics, particle physics and cosmology, to give a detailed exposition of the role of topo logical defects in these fields; to explore similarities and differences in the approaches; and to provide a common basis for discussion and future collaborative research on common problems.
The Marcel Grossmann meetings were conceived to promote theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. They review recent developments in gravitation and general relativity, with major emphasis on mathematical foundations and physical predictions. Their main objective is to bring together scientists from diverse backgrounds and their range of topics is broad, from more abstract classical theory and quantum gravity and strings to more concrete relativistic astrophysics observations and modeling.This Tenth Marcel Grossmann Meeting was organized by an international committee...
This book presents a comprehensive account of the renormalization-group (RG) method and its extension, the doublet scheme, in a geometrical point of view. It extract long timescale macroscopic/mesoscopic dynamics from microscopic equations in an intuitively understandable way rather than in a mathematically rigorous manner and introduces readers to a mathematically elementary, but useful and widely applicable technique for analyzing asymptotic solutions in mathematical models of nature. The book begins with the basic notion of the RG theory, including its connection with the separation of scales. Then it formulates the RG method as a construction method of envelopes of the naive perturbative...