You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.
"Engaging, elegantly written." — Applied Mathematical Modelling Mathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models. The author begins with a discussion of the term "model," followed by clearly presented examples of the different types of models (finite, statistical, stochastic, etc.). He then goes on to discuss the formulation of a model and ...
Elementary Chemical Reactor Analysis focuses on the processes, reactions, methodologies, and approaches involved in chemical reactor analysis, including stoichiometry, adiabatic reactors, external mass transfer, and thermochemistry. The publication first takes a look at stoichiometry and thermochemistry and chemical equilibrium. Topics include heat of formation and reaction, measurement of quantity and its change by reaction, concentration changes with a single reaction, rate of generation of heat by reaction, and equilibrium of simultaneous and heterogeneous reactions. The manuscript then offers information on reaction rates and the progress of reaction in time. Discussions focus on systems...
This monograph is an account of some problems involving diffusion or diffusion with simultaneous reaction that can be illuminated by the use of variational principles. It was written during a period that included sabbatical leaves of one of us (W. S. ) at the University of Minnesota and the other (R. A. ) at the University of Cambridge and we are grateful to the Petroleum Research Fund for helping to support the former and the Guggenheim Foundation for making possible the latter. We would also like to thank Stephen Prager for getting us together in the first place and for showing how interesting and useful these methods can be. We have also benefitted from correspondence with Dr. A. M. Arthu...
Mathematics in Science and Engineering, Volume 3: The Optimal Design of Chemical Reactors: A Study in Dynamic Programming covers some of the significant problems of chemical reactor engineering from a unified point of view. This book discusses the principle of optimality in its general baring on chemical processes. Organized into nine chapters, this volume begins with an overview of the whole range of optimal problems in chemical reactor design. This text then provides the fundamental equations for reactions and reactors. Other chapters consider the objective function needed to define a realistic optimal problem and explain separately the main types of chemical reactors and their associated problems. This book discusses as well the three problems with a stochastic element. The final chapter deals with the optimal operation of existing reactors that may be regarded as partial designs in which only some of the variables can be optimally chosen. This book is a valuable resource for chemical engineers.
An authoritative volume on the design and preparation of catalysts. The book covers surface morphology, organometallics, supports, kinetics, mathematical modelling and hydrometallation catalysts.
This book presents an authoritative progress report that will remain germane to the topic and prove to be a substantial inspiration to further progress. It is valuable to academic and industrial practitioners of the art and science of chemical reaction and reactor engineering.
This classic presentation has never been superseded in its encyclopedic coverage of the subject, and its excellent exposition of fundamental theorems, equations, and detailed methods of solution. Topics include many aspects of the dynamics of liquids and gases and 3-dimensional problems on motion of solids through a liquid. 1932 edition.
Excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. Geared toward advanced undergraduate and graduate students of mathematics and science; prerequisites include calculus and vector analysis. 1971 edition.