You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The method of effective field theory (EFT) is ideally suited to deal with physical systems containing separate energy scales. Applied to low energy hadronic phenomena it provides a framework for systematically describing nuclear systems in a way consistent with quantum chromodynamics, the underlying theory of strong interactions. Because EFT offers the possibility of a unified description of all low energy processes involving nucleons, it has the potential to become the foundation of conventional nuclear physics.Much progress has been made recently in this field: a number of observables in the two-nucleon sector were computed and compared to experiment, issues related to the extension of the EFT program to the three-nucleon sector were clarified, and the convergence of the low energy expansion was critically examined. This book contains the proceedings of the Workshop on 'Nuclear Physics with Effective Field Theory II', where these and other developments were discussed.
Contains many discussions on phenomenology and theories about neutrino mass and oscillations.
Effective field theory (EFT), a technique used extensively in particle physics, provides a framework for systematically describing nuclear systems in a way consistent with quantum chromodynamics, the underlying theory of strong interactions. Because it offers the possibility of a unified description of all low-energy processes involving nucleons, it has the potential to become the foundation of conventional nuclear physics.Since the early 1990's when Weinberg applied the techniques of EFT to multiple-nucleon systems, significant developments have been made. However, serious obstacles have also been encountered. This book contains the proceedings of the Workshop on Nuclear Physics with Effective Field Theory, held in the Kellogg Radiation Laboratory at Caltech on the 26th and 27th of February 1998, which specifically addressed those issues. Physicists from different areas of sub-atomic physics gathered in an attempt to arrive at a consistent power counting scheme for the nucleon-nucleon interaction, a first step toward dealing with few-nucleon systems and ultimately nuclear matter and finite nuclei.
Frank Close, a leading physicist and talented popular science writer, reveals the true story of the cold fusion controversy--a story ignored until now in spite of the glare of publicity surrounding Martin Fleischmann and Stanley Pons. On March 23, 1989, these two Utah scientists held an astonishing press conference, maintaining that they had succeeded, working in secret, in harnessing atomic fusion. What was the basis for their claims to have achieved cold fusion in a test tube in a basement laboratory, while other scientists--using magnets as big as houses and temperatures hotter than those in the center of the sun--were failing to produce as much power as they were using? Why did Fleischma...
None
Vol. 5, no. 4, July-Aug. 1950, commemorates the 15th anniversary of the discovery of the Meson theory.