You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The first book to assemble the wide body of theory which has rapidly developed on the dynamics of linear operators. Written for researchers in operator theory, but also accessible to anyone with a reasonable background in functional analysis at the graduate level.
This volume contains short courses and recent papers by several specialists in different fields of Mathematical Analysis. It offers a wide perspective of the current state of research, and new trends, in areas related to Geometric Analysis, Harmonic Analysis, Complex Analysis, Functional Analysis and History of Mathematics. The contributions are presented with a remarkable expository nature and this makes the discussed topics accessible to a more general audience.
This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of new directions and advances in topics for current and future research in the field. Contents: Lineable and Spaceable Properties (R M Aron); Alexander Grothendieck's Work on Functional Analysis (F Bombal); Maximal Functions in Fourier Analysis (J Duoandikoetxea); Hypercyclic Operators: Some Recent Progress (G Godefroy); On the Hahn-Banach Theorem (L Narici); Lipschitz Quotient Maps Between Banach Spaces (W B Johnson); Approximation Algorithms in Banach Spaces (N Kalton); Spectral Properties of Cesa'ro-Like Operators (M M Neumann); Some Ideas on Mathematical Training Concerning Mathematical Analysis (B Rubio); Interpolation and Sampling (K Seip); Classes of Indefinitely Differentiable Functions (M Valdivia); Classical Potential Theory and Analytic Capacity (J Verdera); Best Approximations on Small Regions: A General Approach (F Zo & H H Cuenya). Readership: Mathematicians in analysis and differential equations and approximation theory.
It is commonly believed that chaos is linked to non-linearity, however many (even quite natural) linear dynamical systems exhibit chaotic behavior. The study of these systems is a young and remarkably active field of research, which has seen many landmark results over the past two decades. Linear dynamics lies at the crossroads of several areas of mathematics including operator theory, complex analysis, ergodic theory and partial differential equations. At the same time its basic ideas can be easily understood by a wide audience. Written by two renowned specialists, Linear Chaos provides a welcome introduction to this theory. Split into two parts, part I presents a self-contained introductio...
This is an collection of some easily-formulated problems that remain open in the study of the geometry and analysis of Banach spaces. Assuming the reader has a working familiarity with the basic results of Banach space theory, the authors focus on concepts of basic linear geometry, convexity, approximation, optimization, differentiability, renormings, weak compact generating, Schauder bases and biorthogonal systems, fixed points, topology and nonlinear geometry. The main purpose of this work is to help in convincing young researchers in Functional Analysis that the theory of Banach spaces is a fertile field of research, full of interesting open problems. Inside the Banach space area, the tex...
View the abstract.
View the abstract.
View the abstract.
View the abstract.
View the abstract.