You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A Tutorial on Elliptic PDE Solvers and Their Parallelization is a valuable aid for learning about the possible errors and bottlenecks in parallel computing. One of the highlights of the tutorial is that the course material can run on a laptop, not just on a parallel computer or cluster of PCs, thus allowing readers to experience their first successes in parallel computing in a relatively short amount of time. This tutorial is intended for advanced undergraduate and graduate students in computational sciences and engineering; however, it may also be helpful to professionals who use PDE-based parallel computer simulations in the field.
Numerical software is used to test scientific theories, design airplanes and bridges, operate manufacturing lines, control power plants and refineries, analyze financial derivatives, identify genomes, and provide the understanding necessary to derive and analyze cancer treatments. Because of the high stakes involved, it is essential that results computed using software be accurate, reliable, and robust. Unfortunately, developing accurate and reliable scientific software is notoriously difficult. This book investigates some of the difficulties related to scientific computing and provides insight into how to overcome them and obtain dependable results. The tools to assess existing scientific a...
Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students provides sophisticated numerical methods for the fast and accurate solution of a variety of equations, including ordinary differential equations, delay equations, integral equations, functional equations, and some partial differential equations, as well as boundary value problems. It introduces many modeling techniques and methods for analyzing the resulting equations.
The editors provide a review of the programming environments for parallel computers with the help of worldwide specialists in each domain. Four different domains were discussed at the workshop, and they each form a part of this book.
This book constitutes the thoroughly refereed post-proceedings of the 8th International Workshop on Applied Parallel Computing, PARA 2006. It covers partial differential equations, parallel scientific computing algorithms, linear algebra, simulation environments, algorithms and applications for blue gene/L, scientific computing tools and applications, parallel search algorithms, peer-to-peer computing, mobility and security, algorithms for single-chip multiprocessors.
Revised and updated, the third edition of Golub and Van Loan's classic text in computer science provides essential information about the mathematical background and algorithmic skills required for the production of numerical software. This new edition includes thoroughly revised chapters on matrix multiplication problems and parallel matrix computations, expanded treatment of CS decomposition, an updated overview of floating point arithmetic, a more accurate rendition of the modified Gram-Schmidt process, and new material devoted to GMRES, QMR, and other methods designed to handle the sparse unsymmetric linear system problem.
The calculation of partial derivatives is a fundamental need in scientific computing. Automatic differentiation (AD) can be applied straightforwardly to obtain all necessary partial derivatives (usually first and, possibly, second derivatives) regardless of a code?s complexity. However, the space and time efficiency of AD can be dramatically improved?sometimes transforming a problem from intractable to highly feasible?if inherent problem structure is used to apply AD in a judicious manner. Automatic Differentiation in MATLAB using ADMAT with Applications?discusses the efficient use of AD to solve real problems, especially multidimensional zero-finding and optimization, in the MATLAB environment. This book is concerned with the determination of the first and second derivatives in the context of solving scientific computing problems with an emphasis on optimization and solutions to nonlinear systems. The authors focus on the application rather than the implementation of AD, solve real nonlinear problems with high performance by exploiting the problem structure in the application of AD, and provide many easy to understand applications, examples, and MATLAB templates.?
The first book on parallel MATLAB and the first parallel computing book focused on quickly producing efficient parallel programs.
An introduction to graph algorithms accessible to those without a computer science background.
Techniques for generating orthogonal polynomials numerically have appeared only recently, within the last 30 or so years. Orthogonal Polynomials in MATLAB: Exercises and Solutions describes these techniques and related applications, all supported by MATLAB programs, and presents them in a unique format of exercises and solutions designed by the author to stimulate participation. Important computational problems in the physical sciences are included as models for readers to solve their own problems.