You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The volume presents a collaboration between internationally recognized experts on anti-optimization and structural optimization, and summarizes various novel ideas, methodologies and results studied over 20 years. The book vividly demonstrates how the concept of uncertainty should be incorporated in a rigorous manner during the process of designing real-world structures. The necessity of anti-optimization approach is first demonstrated, then the anti-optimization techniques are applied to static, dynamic and buckling problems, thus covering the broadest possible set of applications. Finally, anti-optimization is fully utilized by a combination of structural optimization to produce the optimal design considering the worst-case scenario. This is currently the only book that covers the combination of optimization and anti-optimization. It shows how various optimization techniques are used in the novel anti-optimization technique, and how the structural optimization can be exponentially enhanced by incorporating the concept of worst-case scenario, thereby increasing the safety of the structures designed in various fields of engineering.
Structural optimization, a broad interdisciplinary field, requires skillful combining of mathematical and mechanical knowledge with engineering. It is both intellectually attractive and technologically rewarding. The Symposium on Optimization in Structural Design was the second IUTAM Symposium in Poland. Fifteen years have elapsed since the Symposium on Nonhomogeneity in Elasticity and Plasticity, presided by Professor Olszak, was held in Warsaw. These fifteen years mean a lot for mechanics in Poland. Continuing the tradition of Professor Maksymilian Tytus Huber's research, considerable development of the mechanical sciences has been achieved in this country mostly due to the knowledge, visi...
The engineering design of structures and machines consists often in finding the best solution among a finite number of feasible decisions. This volume comprises problems and solution methods for discrete structural optimization. Exact, approximate and heuristic methods are presented applying deterministic and stochastic approaches.
Technology/Engineering/Mechanical Helps you move from theory to optimizing engineering systems in almost any industry Now in its Fourth Edition, Professor Singiresu Rao's acclaimed text Engineering Optimization enables readers to quickly master and apply all the important optimization methods in use today across a broad range of industries. Covering both the latest and classical optimization methods, the text starts off with the basics and then progressively builds to advanced principles and applications. This comprehensive text covers nonlinear, linear, geometric, dynamic, and stochastic programming techniques as well as more specialized methods such as multiobjective, genetic algorithms, s...
The need for a comprehensive book on probabilistic structural mechanics that brings together the many analytical and computational methods developed over the years and their applications in a wide spectrum of industries-from residential buildings to nuclear power plants, from bridges to pressure vessels, from steel structures to ceramic structures-became evident from the many discussions the editor had with practising engineers, researchers and professors. Because no single individual has the expertise to write a book with such a di.verse scope, a group of 39 authors from universities, research laboratories, and industries from six countries in three continents was invited to write 30 chapters covering the various aspects of probabilistic structural mechanics. The editor and the authors believe that this handbook will serve as a reference text to practicing engineers, teachers, students and researchers. It may also be used as a textbook for graduate-level courses in probabilistic structural mechanics. The editor wishes to thank the chapter authors for their contributions. This handbook would not have been a reality without their collaboration.
The aim of the book is to give a clear picture of some new modern trends in composite mechanics and to give a presentation of the current state-of-the-art of the theory and application of composite laminates. The book addresses the basics as well as recent developments in the theory of laminates and their effective properties, the problem of testing and identification of properties, strength, damage, and failure of composite laminates, lightweight construction principles, optimization techniques, the generation of smart structures, and a number of special technical aspects (e.g. stress localization), their modelling and analysis. The intention of the book is to provide deeper understanding, to give mathematical and algorithmic techniques for analysis, simulation and optimization and to link various aspects of composite mechanics as necessary to exploit the full potential that is possible for composite structures.
Featuring contributions from experts at some of the world's leading academic and industrial institutions, Advanced Polymeric Materials: Structure Property Relationships brings into book form a wealth of information previously available primarily only within computer programs. In a welcome narrative treatment, it provides comprehensive coverage of p
This volume is an outcome of the 11th IFIP WG7.5 working conference on Reliability and Optimization of Structural Systems in Canada. The conference focuses on structural reliability methods and applications and engineering risk analysis and decision-making.
This volume contains thirty-one papers presented at the Twelfth Scientific Meeting of the IFIP Working Group on Reliability and Optimization of Structural Systems which took place in Aalborg, Denmark, from May 22-25, 2005. The Working Group Conference was organized by the IFIP (International Federation for Information Processing) Working Group 7.5 of the Technical Committee on Modelling and Optimization. The purpose of the Working Group is to promote modern structural system reliability and optimization theory and its applications, to stimulate research, development and application of structural system reliability and optimization theory, to assist and advance research and development in these fields, to further the dissemination and exchange of information on reliability and optimization of structural systems, and to encourage education in structural system reliability and optimization theory.