You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Information and communication technology (ICT) has become a generic and indispensable tool for addressing and solving problems in such diverse areas as management, social and health services, transportation, security and education. As the cost of equipment drops dramatically, it also becomes widely accessible in the developing countries. However, problems of high costs for adequate training of personnel, access to state-to-the-art software and the consultancies needed to facilitate access to ICT can constitute highly dissuasive factors in the dissemination of ICT in developing countries.This volume describes a series of successful initiatives for the insertion of ICT in developing economies. It also identifies significant problems that are likely to be encountered, and suggests useful solutions to these problems. It therefore serves as a useful tool for example applications, and for the successful assimilation of these technologies in developing societies and countries./a
The authors give a characterization of the internally $4$-connected binary matroids that have no minor isomorphic to $M(K_{3,3})$. Any such matroid is either cographic, or is isomorphic to a particular single-element extension of the bond matroid of a cubic or quartic Mobius ladder, or is isomorphic to one of eighteen sporadic matroids.
The Human Condition is a collection of papers by leading evolutionary biologists and philosophers of science that reflect on the Darwinian Revolution as it relates to the human condition at levels ranging from the molecular to the theological. The book focuses on understanding the evolutionary origin of humans and their biological and cultural traits. The Human Condition is organized into three parts: Human Phylogenetic History and the Paleontological Record; Structure and Function of the Human Genome; and Cultural Evolution and the Uniqueness of Being Human. This fourth volume from the In the Light of Evolution (ILE) series, based on a series of Arthur M. Sackler colloquia, was designed to ...
Allohexaploid bread wheat and diploid barley are two of the most cultivated crops in the world. This book reports novel research and reviews concerning the use of modern technologies to understand the molecular bases for wheat and barley improvement. The contributions published in this book illustrate research advances in wheat and barley knowledge using modern molecular techniques. These molecular approaches cover genomic, transcriptomic, proteomic, and phenomic levels, together with new tools for gene identification and the development of novel molecular markers. Overall, the contributions for this book lead to a further understanding of regulatory systems in order to improve wheat and barley performance.
This book addresses various aspects of the current castor bean research, including genetics, biotechnology, comparative genomics, and more specific topics such as oil metabolism and the ricin toxin. It also presents the whole genome sequencing of the castor bean and its impact on the mining of gene families and future plant breeding. Castor bean (Ricinus communis), an oilseed plant, belongs to the Euphorbiaceae (spurge) family. It is a tropical and subtropical crop valued for the high quality and uniform nature of its oil, which is mostly composed of the uncommon fatty acid ricinoleate. Castor bean oil has important industrial applications for the production of lubricants, cosmetics, medicines, and specialty chemicals, and castor bean has also been proposed as a biodiesel crop that does not pose concerns regarding the “food versus fuel” debate. However, it accumulates the type 2 ribosome-inactivating protein ricin in its seeds, and health concerns posed by ricin’s high toxicity have prevented broader cultivation. Recently, there has been renewed interest in castor bean due to potential biosecurity issues.
Advancements in high-throughput “Omics” techniques have revolutionized plant molecular biology research. Proteomics offers one of the best options for the functional analysis of translated regions of the genome, generating a wealth of detailed information regarding the intrinsic mechanisms of plant stress responses. Various proteomic approaches are being exploited extensively for elucidating master regulator proteins which play key roles in stress perception and signaling, and these approaches largely involve gel-based and gel-free techniques, including both label-based and label-free protein quantification. Furthermore, post-translational modifications, subcellular localization, and protein–protein interactions provide deeper insight into protein molecular function. Their diverse applications contribute to the revelation of new insights into plant molecular responses to various biotic and abiotic stressors.
This book provides an introduction to the inverse eigenvalue problem for graphs (IEP-$G$) and the related area of zero forcing, propagation, and throttling. The IEP-$G$ grew from the intersection of linear algebra and combinatorics and has given rise to both a rich set of deep problems in that area as well as a breadth of “ancillary” problems in related areas. The IEP-$G$ asks a fundamental mathematical question expressed in terms of linear algebra and graph theory, but the significance of such questions goes beyond these two areas, as particular instances of the IEP-$G$ also appear as major research problems in other fields of mathematics, sciences and engineering. One approach to the IEP-$G$ is through rank minimization, a relevant problem in itself and with a large number of applications. During the past 10 years, important developments on the rank minimization problem, particularly in relation to zero forcing, have led to significant advances in the IEP-$G$. The monograph serves as an entry point and valuable resource that will stimulate future developments in this active and mathematically diverse research area.
Graphs and Networks A unique blend of graph theory and network science for mathematicians and data science professionals alike. Featuring topics such as minors, connectomes, trees, distance, spectral graph theory, similarity, centrality, small-world networks, scale-free networks, graph algorithms, Eulerian circuits, Hamiltonian cycles, coloring, higher connectivity, planar graphs, flows, matchings, and coverings, Graphs and Networks contains modern applications for graph theorists and a host of useful theorems for network scientists. The book begins with applications to biology and the social and political sciences and gradually takes a more theoretical direction toward graph structure theor...
The Flax Genome is a comprehensive compilation of most recent studies focused on reference genome, genetic resources and molecular diversity, breeding, QTL mapping, gene editing tools, functional genomics and metabolomics, molecular breeding via genomic selection, and genomic resources. The flax genome reference sequences and the new genome assemblies are presented. A list of flax QTL and candidate genes associated with more than 35 traits, including yield and agronomic, seed quality and fatty acid composition, fibre quality and yield, abiotic stress, and disease resistance traits, are summarized. A QTL- based genomic selection strategy and genome–editing tools are systematically introduced. In addition, huge amounts of flax genomic resources generated in the last decade are summarized. The book contains 13 chapters with about 390 pages authored by globally reputed researchers in the relevant fields to this crop The book is intended to be useful to students, teachers, and researchers interested in traditional and molecular breeding, pathology, molecular genetics and breeding, bioinformatics and computational biology, and functional genomics