You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book collects refereed lectures and communications presented at the Free Boundary Problems Conference (FBP2005). These discuss the mathematics of a broad class of models and problems involving nonlinear partial differential equations arising in physics, engineering, biology and finance. Among other topics, the talks considered free boundary problems in biomedicine, in porous media, in thermodynamic modeling, in fluid mechanics, in image processing, in financial mathematics or in computations for inter-scale problems.
This handbook is volume III in a series devoted to stationary partial differential quations. Similarly as volumes I and II, it is a collection of self contained state-of-the-art surveys written by well known experts in the field. The topics covered by this handbook include singular and higher order equations, problems near critically, problems with anisotropic nonlinearities, dam problem, T-convergence and Schauder-type estimates. These surveys will be useful for both beginners and experts and speed up the progress of corresponding (rapidly developing and fascinating) areas of mathematics.Key features: - Written by well-known experts in the field- Self-contained volume in series covering one of the most rapid developing topics in mathematics- Written by well-known experts in the field- Self-contained volume in series covering one of the most rapid developing topics in mathematics
This book consists of contributions originating from a conference in Obedo, Portugal, which honoured the 70th birthday of V.A. Solonnikov. A broad variety of topics centering on nonlinear problems is presented, particularly Navier-Stokes equations, viscosity problems, diffusion-absorption equations, free boundaries, and Euler equations.
For the past several decades, the study of free boundary problems has been a very active subject of research occurring in a variety of applied sciences. What these problems have in common is their formulation in terms of suitably posed initial and boundary value problems for nonlinear partial differential equations. Such problems arise, for example, in the mathematical treatment of the processes of heat conduction, filtration through porous media, flows of non-Newtonian fluids, boundary layers, chemical reactions, semiconductors, and so on. The growing interest in these problems is reflected by the series of meetings held under the title "Free Boundary Problems: Theory and Applications" (Ox ...
This book collects selected peer reviewed papers on the topics of Nonlinear Analysis, Functional Analysis, (Korovkin-Type) Approximation Theory, and Partial Differential Equations. The aim of the volume is, in fact, to promote the connection among those different fields in Mathematical Analysis. The book celebrates Francesco Altomare, on the occasion of his 70th anniversary.
This special volume is a collection of outstanding more applied articles presented in AMAT 2015 held in Ankara, May 28-31, 2015, at TOBB Economics and Technology University. The collection is suitable for Applied and Computational Mathematics and Engineering practitioners, also for related graduate students and researchers. Furthermore it will be a useful resource for all science and engineering libraries. This book includes 29 self-contained and well-edited chapters that can be among others useful for seminars in applied and computational mathematics, as well as in engineering.
The contributions contained in the volume, written by leading experts in their respective fields, are expanded versions of talks given at the INDAM Workshop "Anomalies in Partial Differential Equations" held in September 2019 at the Istituto Nazionale di Alta Matematica, Dipartimento di Matematica "Guido Castelnuovo", Università di Roma "La Sapienza". The volume contains results for well-posedness and local solvability for linear models with low regular coefficients. Moreover, nonlinear dispersive models (damped waves, p-evolution models) are discussed from the point of view of critical exponents, blow-up phenomena or decay estimates for Sobolev solutions. Some contributions are devoted to models from applications as traffic flows, Einstein-Euler systems or stochastic PDEs as well. Finally, several contributions from Harmonic and Time-Frequency Analysis, in which the authors are interested in the action of localizing operators or the description of wave front sets, complete the volume.
The area of dynamical systems and differential geometry via MAPLE is a field which has become exceedingly technical in recent years. In the field, everything is structured for the benefit of optimizing evolutionary geometric aspects that describe significant physical or engineering phenomena. This book is structured in terms of the importance, accessibility and impact of theoretical notions capable of shaping a future mathematician-computer scientist possessing knowledge of evolutionary dynamical systems. It provides a self-contained and accessible introduction for graduate and advanced undergraduate students in mathematics, engineering, physics, and economic sciences. This book is suitable for both self-study for students and professors with a background in differential geometry and for teaching a semester-long introductory graduate course in dynamical systems and differential geometry via MAPLE.
This volume contains the contributions of the participants of the 12th ISAAC congress which was held at the University of Aveiro, Portugal, from July 29 to August 3, 2019. These contributions originate from the following sessions: Applications of dynamical systems theory in biology, Complex Analysis and Partial Differential Equations, Complex Geometry, Complex Variables and Potential Theory, Constructive Methods in the Theory of Composite and Porous Media, Function Spaces and Applications, Generalized Functions and Applications, Geometric & Regularity Properties of Solutions to Elliptic and Parabolic PDEs, Geometries Defined by Differential Forms, Partial Differential Equations on Curved Spacetimes, Partial Differential Equations with Nonstandard Growth, Quaternionic and Clifford Analysis, Recent Progress in Evolution Equations, Wavelet theory and its Related Topics.
The aim of this proceeding is addressed to present recent developments of the mathematical research on the Navier-Stokes equations, the Euler equations and other related equations. In particular, we are interested in such problems as: 1) existence, uniqueness and regularity of weak solutions2) stability and its asymptotic behavior of the rest motion and the steady state3) singularity and blow-up of weak and strong solutions4) vorticity and energy conservation5) fluid motions around the rotating axis or outside of the rotating body6) free boundary problems7) maximal regularity theorem and other abstract theorems for mathematical fluid mechanics.