You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This multiauthored volume sketches the applications of nonequilibrium thermodynamics to complex systems. These are characterized by an involved form of the Gibbs equation and include systems such as solutions of macromolecules, magnetic hysteresis bodies, viscoelastic fluids, polarizable media, fluids under stresses and in the presence of essential nonstationarities, and high temperature gradients. As a rule, the so- called internal variables and/or dissipative fluxes are essential in the thermodynamic description of such systems.
Despite the vast research on energy optimization and process integration, there has to date been no synthesis linking these together. This book fills the gap, presenting optimization and integration in energy and process engineering. The content is based on the current literature and includes novel approaches developed by the authors. Various thermal and chemical systems (heat and mass exchangers, thermal and water networks, energy converters, recovery units, solar collectors, and separators) are considered. Thermodynamics, kinetics and economics are used to formulate and solve problems with constraints on process rates, equipment size, environmental parameters, and costs. Comprehensive cove...
Scientists and engineers are nowadays faced with the problem of optimizing complex systems subject to constraints from, ecology, economics, and thermodynamics. It is chiefly to the last of these that this volume is addressed. Intended for physicists, chemists, and engineers, the book uses examples from solar, thermal, mechanical, chemical, and environmental engineering to focus on the use of thermodynamic criteria for optimizing energy conversion and transmission. The early chapters centre on solar energy conversion, the second section discusses the transfer and conversion of chemical energy, while the concluding chapters deal with geometric methods in thermodynamics.
Complexity and Complex Ecological Systems is an extension of Elsevier's 2021 book Complexity and Complex Chemo-Electric Systems directed toward the analysis and synthesis of diverse ecological processes running in heterogeneous macrosystems. Contemporary advanced techniques such as averaged analysis, food webs approaches, and classical optimization results along with some numerical algorithms are commonly used in ecosystems. This book treats ecological systems as specific functional integrities. In Complexity and Complex Ecological Systems, one can observe how various types of ecological heterogeneities can contribute to flows of living and inanimate parts of the moving pseudo-continuum. Thi...
Entropy and entropy generation play essential roles in our understanding of many diverse phenomena ranging from cosmology to biology. Their importance is manifest in areas of immediate practical interest such as the provision of global energy as well as in others of a more fundamental flavour such as the source of order and complexity in nature. They also form the basis of most modern formulations of both equilibrium and nonequilibrium thermodynamics. Today much progress is being made in our understanding of entropy and entropy generation in both fundamental aspects and application to concrete problems. The purpose of this volume is to present some of these recent and important results in a ...
"The three-dimensional Heisenberg group, being a quite simple non-commutative Lie group, appears prominently in various applications of mathematics. The goal of this book is to present basic geometric and algebraic properties of the Heisenberg group and its relation to other important mathematical structures (the skew field of quaternions, symplectic structures, and representations) and to describe some of its applications. In particular, the authors address such subjects as signal analysis and processing, geometric optics, and quantization. In each case, the authors present necessary details of the applied topic being considered." "This book manages to encompass a large variety of topics being easily accessible in its fundamentals. It can be useful to students and researchers working in mathematics and in applied mathematics."--BOOK JACKET.
The Automobile and the Environment gathers a selection of papers presented by researchers and engineers from academic institutions and the automotive industry at the International Congress for Automotive and Transport Engineering CONAT 2010, organized by the Transylvania University of Brașov in Romania, SIAR (The Society of Automotive Engineers from Romania) and SAE International, under the patronage of FISITA (The International Federation of Automotive Engineering Societies) and EAEC (European Automobile Engineers Cooperation). The book contains four parts: 1. Automotive Powertrains 2. Alternative Fuels 3. Vehicle Dynamics and Vehicle Systems Design 4. Transport, Traffic and Safety By studying this book, engineers will be given the opportunity to evaluate the new visions and concepts being applied in the modern automotive industry, and also the chance to identify themes for future studies in the context of sustainable development, the use of alternative energy, reorganisation of industry strategies, and the increase in competitivity through innovation.
Energy Optimization in Process Systems and Fuel Cells, Second Edition covers the optimization and integration of energy systems, with a particular focus on fuel cell technology. With rising energy prices, imminent energy shortages, and increasing environmental impacts of energy production, energy optimization and systems integration is critically important. The book applies thermodynamics, kinetics and economics to study the effect of equipment size, environmental parameters, and economic factors on optimal power production and heat integration. Author Stanislaw Sieniutycz, highly recognized for his expertise and teaching, shows how costs can be substantially reduced, particularly in utiliti...
A comprehensive assessment of the methodologies of thermodynamic optimization, exergy analysis and thermoeconomics, and their application to the design of efficient and environmentally sound energy systems. The chapters are organized in a sequence that begins with pure thermodynamics and progresses towards the blending of thermodynamics with other disciplines, such as heat transfer and cost accounting. Three methods of analysis stand out: entropy generation minimization, exergy (or availability) analysis, and thermoeconomics. The book reviews current directions in a field that is both extremely important and intellectually alive. Additionally, new directions for research on thermodynamics and optimization are revealed.