You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The twentieth century is the period during which the history of Greek mathematics reached its greatest acme. Indeed, it is by no means exaggerated to say that Greek mathematics represents the unique field from the wider domain of the general history of science which was included in the research agenda of so many and so distinguished scholars, from so varied scientific communities (historians of science, historians of philosophy, mathematicians, philologists, philosophers of science, archeologists etc. ), while new scholarship of the highest quality continues to be produced. This volume includes 19 classic papers on the history of Greek mathematics that were published during the entire 20th c...
In this critical edition of Nicole Oresme's 14th-century treatise on atmospheric refraction, Oresme uses optics and infinitesimals to help solve this vexing problem of astronomy, proposing that light travels along a curve through the atmosphere, centuries before Hooke and Newton.
This volume brings together a number of leading scholars working in the field of ancient Greek mathematics to present their latest research. In their respective area of specialization, all contributors offer stimulating approaches to questions of historical and historiographical ‘revolutions’ and ‘continuity’. Taken together, they provide a powerful lens for evaluating the applicability of Thomas Kuhn’s ideas on ‘scientific revolutions’ to the discipline of ancient Greek mathematics. Besides the latest historiographical studies on ‘geometrical algebra’ and ‘premodern algebra’, the reader will find here some papers which offer new insights into the controversial relation...
Engaging and comprehensive history of Greek mathematics, with full attention to social contexts and its place in world history.
The first history of postwar mathematics, offering a new interpretation of the rise of abstraction and axiomatics in the twentieth century. Why did abstraction dominate American art, social science, and natural science in the mid-twentieth century? Why, despite opposition, did abstraction and theoretical knowledge flourish across a diverse set of intellectual pursuits during the Cold War? In recovering the centrality of abstraction across a range of modernist projects in the United States, Alma Steingart brings mathematics back into the conversation about midcentury American intellectual thought. The expansion of mathematics in the aftermath of World War II, she demonstrates, was characteriz...
S(zp,zp) performs an innovative analysis of one of modern logic's most celebrated cornerstones: the proof of Gödel's first incompleteness theorem. The book applies the semiotic theories of French post- structuralists such as Julia Kristeva, Jacques Derrida and Gilles Deleuze to shed new light on a fundamental question: how do mathematical signs produce meaning and make sense? S(zp,zp) analyses the text of the proof of Gödel's result, and shows that mathematical language, like other forms of language, enjoys the full complexity of language as a process, with its embodied genesis, constitutive paradoxical forces and unbounded shifts of meaning. These effects do not infringe on the logico-mathematical validity of Gödel's proof. Rather, they belong to a mathematical unconscious that enables the successful function of mathematical texts for a variety of different readers. S(zp,zp) breaks new ground by synthesising mathematical logic and post-structural semiotics into a new form of philosophical fabric, and offers an original way of bridging the gap between the "two cultures".
This book presents a broad selection of articles mainly published during the last two decades on a variety of topics within the history of mathematics, mostly focusing on particular aspects of mathematical practice. This book is of interest to, and provides methodological inspiration for, historians of science or mathematics and students of these disciplines.
This book is about the creation and production of textbooks for learning and teaching mathematics. It covers a period from Antiquity to Modern Times. The analysis begins by assessing principal cultures with a practice of mathematics. The tension between the role of the teacher and his oral mode, on the one hand, and the use of a written (printed) text, in their respective relation with the student, is one of the dimensions of the comparative analysis, conceived of as the ‘textbook triangle’. The changes in this tension with the introduction of the printing press are discussed. The book presents various national case studies (France, Germany, Italy) as well as analyses of the internationalisation of textbooks via transmission processes. As this topic has not been sufficiently explored in the literature, it will be very well received by scholars of mathematics education, mathematics teacher educators and anyone with an interest in the field.
David Lindberg presents the first critical edition of the text of Roger Bacon's classic work Perspectiva, prepared from Latin manuscripts, accompanied by a facing-page English translation, critical notes, and a full study of the text. Also included is an analysis of Bacon's sources, influence, and role in the emergence of the discipline of perspectiva.
The Fourth International Conference on the History of Mathematics Education was hosted by Academy of Sciences and University of Turin (Italy). About 50 senior and junior researchers from 16 countries met for four days to talk about one topic: the history of mathematics education. In total 44 contributions were presented. The themes were Ideas, people and movements, Transmission of ideas, Teacher education, Geometry and textbooks, Textbooks – changes and origins, Curriculum and reform, Teaching in special institutions, and Teaching of geometry. In this volume you find 28 of the papers, all of them peer-reviewed. Since the first international conference on the history of mathematics educatio...