You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Electroencephalograms (EEGs) are becoming increasingly important measurements of brain activity and they have great potential for the diagnosis and treatment of mental and brain diseases and abnormalities. With appropriate interpretation methods they are emerging as a key methodology to satisfy the increasing global demand for more affordable and effective clinical and healthcare services. Developing and understanding advanced signal processing techniques for the analysis of EEG signals is crucial in the area of biomedical research. This book focuses on these techniques, providing expansive coverage of algorithms and tools from the field of digital signal processing. It discusses their appli...
In this book, the field of adaptive learning and processing is extended to arguably one of its most important contexts which is the understanding and analysis of brain signals. No attempt is made to comment on physiological aspects of brain activity; instead, signal processing methods are developed and used to assist clinical findings. Recent developments in detection, estimation and separation of diagnostic cues from different modality neuroimaging systems are discussed. These include constrained nonlinear signal processing techniques which incorporate sparsity, nonstationarity, multimodal data, and multiway techniques. Key features: Covers advanced and adaptive signal processing techniques...
EEG Signal Processing and Machine Learning Explore cutting edge techniques at the forefront of electroencephalogram research and artificial intelligence from leading voices in the field The newly revised Second Edition of EEG Signal Processing and Machine Learning delivers an inclusive and thorough exploration of new techniques and outcomes in electroencephalogram (EEG) research in the areas of analysis, processing, and decision making about a variety of brain states, abnormalities, and disorders using advanced signal processing and machine learning techniques. The book content is substantially increased upon that of the first edition and, while it retains what made the first edition so popu...
The book reports on advanced theories and methods in two related engineering fields: electrical and electronic engineering, and communications engineering and computing. It highlights areas of global and growing importance, such as renewable energy, power systems, mobile communications, security and the Internet of Things (IoT). The contributions cover a number of current research issues, including smart grids, photovoltaic systems, wireless power transfer, signal processing, 4G and 5G technologies, IoT applications, mobile cloud computing and many more. Based on the proceedings of the first International Conference on Emerging Trends in Electrical, Electronic and Communications Engineering (ELECOM 2016), held in Voila Bagatelle, Mauritius from November 25 to 27, 2016, the book provides graduate students, researchers and professionals with a snapshot of the state-of-the-art and a source of new ideas for future research and collaborations.
Recent advancements in signal processing and computerised methods are expected to underpin the future progress of biomedical research and technology, particularly in measuring and assessing signals and images from the human body. This book focuses on singular spectrum analysis (SSA), an effective approach for single channel signal analysis, and its
tionsalso,apartfromsignalprocessing,withother?eldssuchasstatisticsandarti?cial neuralnetworks. As long as we can ?nd a system that emits signals propagated through a mean, andthosesignalsarereceivedbyasetofsensorsandthereisaninterestinrecovering the originalsources,we have a potential?eld ofapplication forBSS and ICA. Inside thatwiderangeofapplicationswecan?nd,forinstance:noisereductionapplications, biomedicalapplications,audiosystems,telecommunications,andmanyothers. This volume comes out just 20 years after the ?rst contributionsin ICA and BSS 1 appeared . Thereinafter,the numberof research groupsworking in ICA and BSS has been constantly growing, so that nowadays we can estimate that far more than 100 groupsareresearchinginthese?elds. Asproofoftherecognitionamongthescienti?ccommunityofICAandBSSdev- opmentstherehavebeennumerousspecialsessionsandspecialissuesinseveralwell- 1 J.Herault, B.Ans,“Circuits neuronaux à synapses modi?ables: décodage de messages c- posites para apprentissage non supervise”, C.R. de l'Académie des Sciences, vol. 299, no. III-13,pp.525–528,1984.
A complete guide to the state of the art theoretical and manufacturing developments of body sensor network, design, and algorithms In Body Sensor Networking, Design, and Algorithms, professionals in the field of Biomedical Engineering and e-health get an in-depth look at advancements, changes, and developments. When it comes to advances in the industry, the text looks at cooperative networks, noninvasive and implantable sensor microelectronics, wireless sensor networks, platforms, and optimization—to name a few. Each chapter provides essential information needed to understand the current landscape of technology and mechanical developments. It covers subjects including Physiological Sensors...
This book introduces readers to the latest exciting advances in human motion sensing and recognition, from the theoretical development of fuzzy approaches to their applications. The topics covered include human motion recognition in 2D and 3D, hand motion analysis with contact sensors, and vision-based view-invariant motion recognition, especially from the perspective of Fuzzy Qualitative techniques. With the rapid development of technologies in microelectronics, computers, networks, and robotics over the last decade, increasing attention has been focused on human motion sensing and recognition in many emerging and active disciplines where human motions need to be automatically tracked, anal...
This book constitutes the refereed proceedings of the 8th International Conference on Intelligent Computing, ICIC 2012, held in Huangshan, China, in July 2012. The 242 revised full papers presented in the three volumes LNCS 7389, LNAI 7390, and CCIS 304 were carefully reviewed and selected from 753 submissions. The papers in this volume (CCIS 304) are organized in topical sections on Neural Networks; Particle Swarm Optimization and Niche Technology; Kernel Methods and Supporting Vector Machines; Biology Inspired Computing and Optimization; Knowledge Discovery and Data Mining; Intelligent Computing in Bioinformatics; Intelligent Computing in Pattern Recognition; Intelligent Computing in Image Processing; Intelligent Computing in Computer Vision; Intelligent Control and Automation; Knowledge Representation/Reasoning and Expert Systems; Advances in Information Security; Protein and Gene Bioinformatics; Soft Computing and Bio-Inspired Techiques in Real-World Applications; Bio-Inspired Computing and Applications.
Within the healthcare domain, big data is defined as any ``high volume, high diversity biological, clinical, environmental, and lifestyle information collected from single individuals to large cohorts, in relation to their health and wellness status, at one or several time points.'' Such data is crucial because within it lies vast amounts of invaluable information that could potentially change a patient's life, opening doors to alternate therapies, drugs, and diagnostic tools. Signal Processing and Machine Learning for Biomedical Big Data thus discusses modalities; the numerous ways in which this data is captured via sensors; and various sample rates and dimensionalities. Capturing, analyzin...