You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the Third International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2020, and the Second International Workshop on Radiogenomics in Neuro-oncology, RNO-AI 2020, held in conjunction with MICCAI 2020, in Lima, Peru, in October 2020.* For MLCN 2020, 18 papers out of 28 submissions were accepted for publication. The accepted papers present novel contributions in both developing new machine learning methods and applications of existing methods to solve challenging problems in clinical neuroimaging. For RNO-AI 2020, all 8 submissions were accepted for publication. They focus on addressing the problems of applying machine learning to large and multi-site clinical neuroimaging datasets. The workshop aimed to bring together experts in both machine learning and clinical neuroimaging to discuss and hopefully bridge the existing challenges of applied machine learning in clinical neuroscience. *The workshops were held virtually due to the COVID-19 pandemic.
This book constitutes the proceedings of the First International Workshop on Radiomics and Radiogenomics in Neuro-oncology, RNO-AI 2019, which was held in conjunction with MICCAI in Shenzhen, China, in October 2019. The 10 full papers presented in this volume were carefully reviewed and selected from 15 submissions. They deal with the development of tools that can automate the analysis and synthesis of neuro-oncologic imaging.
This book constitutes the refereed proceedings of the Second International Multi-topic Conference, IMTIC 2012, held in Jamshoro, Pakistan, in March 2012. The 51 revised full papers presented were carefully reviewed and selected from 205 submissions. The papers address topics from information communication technologies.
The two-volume set LNCS 11992 and 11993 constitutes the thoroughly refereed proceedings of the 5th International MICCAI Brainlesion Workshop, BrainLes 2019, the International Multimodal Brain Tumor Segmentation (BraTS) challenge, the Computational Precision Medicine: Radiology-Pathology Challenge on Brain Tumor Classification (CPM-RadPath) challenge, as well as the tutorial session on Tools Allowing Clinical Translation of Image Computing Algorithms (TACTICAL). These were held jointly at the Medical Image Computing for Computer Assisted Intervention Conference, MICCAI, in Shenzhen, China, in October 2019. The revised selected papers presented in these volumes were organized in the following topical sections: brain lesion image analysis (12 selected papers from 32 submissions); brain tumor image segmentation (57 selected papers from 102 submissions); combined MRI and pathology brain tumor classification (4 selected papers from 5 submissions); tools allowing clinical translation of image computing algorithms (2 selected papers from 3 submissions.)
The four-volume set LNCS 11070, 11071, 11072, and 11073 constitutes the refereed proceedings of the 21st International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2018, held in Granada, Spain, in September 2018. The 373 revised full papers presented were carefully reviewed and selected from 1068 submissions in a double-blind review process. The papers have been organized in the following topical sections: Part I: Image Quality and Artefacts; Image Reconstruction Methods; Machine Learning in Medical Imaging; Statistical Analysis for Medical Imaging; Image Registration Methods. Part II: Optical and Histology Applications: Optical Imaging Applications; Histo...
This book examines deep learning-based approaches in the field of cancer diagnostics, as well as pre-processing techniques, which are essential to cancer diagnostics. Topics include introduction to current applications of deep learning in cancer diagnostics, pre-processing of cancer data using deep learning, review of deep learning techniques in oncology, overview of advanced deep learning techniques in cancer diagnostics, prediction of cancer susceptibility using deep learning techniques, prediction of cancer reoccurrence using deep learning techniques, deep learning techniques to predict the grading of human cancer, different human cancer detection using deep learning techniques, prediction of cancer survival using deep learning techniques, complexity in the use of deep learning in cancer diagnostics, and challenges and future scopes of deep learning techniques in oncology.
State of the Art in Neural Networks and Their Applications, Volume Two presents the latest advances in artificial neural networks and their applications across a wide range of clinical diagnoses. The book provides over views and case studies of advances in the role of machine learning, artificial intelligence, deep learning, cognitive image processing, and suitable data analytics useful for clinical diagnosis and research applications. The application of neural network, artificial intelligence and machine learning methods in biomedical image analysis have resulted in the development of computer-aided diagnostic (CAD) systems that aim towards the automatic early detection of several severe di...
The Taj Mahal is going to be blown off, and with it the visiting ex-President of USA. Or so has been impeccably planned by Major Salim Khan, an undercover ISI operative. The only clue that the intelligence agencies have is the enigmatic Object No. 27, a rare Mughal relic that they don't have much information about. History Professor Narayan Shastri, along with the best men from Indian Intelligence, try to unlock the code. And then there is Saima, the mysterious beauty who found Object No 27 in the first place. She and Professor Shastri travel through the annals of a history rich with deceit – bloody battles of conquests; the satin veil of treachery; and even the elegant, imperious walls built of red sandstone and white marble – to know more of the impending attack, and each other more deeply. Can they stop Major Khan from unleashing his act of terror on the marble monument of love? Precious hands of time are ticking away: Tick. Tick. Tick.
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention