You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book defines the nature and scope of insider problems as viewed by the financial industry. This edited volume is based on the first workshop on Insider Attack and Cyber Security, IACS 2007. The workshop was a joint effort from the Information Security Departments of Columbia University and Dartmouth College. The book sets an agenda for an ongoing research initiative to solve one of the most vexing problems encountered in security, and a range of topics from critical IT infrastructure to insider threats. In some ways, the insider problem is the ultimate security problem.
Software developers need to worry about security as never before. They need clear guidance on safe coding practices, and that’s exactly what this book delivers. The book does not delve deep into theory, or rant about the politics of security. Instead, it clearly and simply lays out the most common threats that programmers need to defend against. It then shows programmers how to make their defense. The book takes a broad focus, ranging over SQL injection, worms and buffer overflows, password security, and more. It sets programmers on the path towards successfully defending against the entire gamut of security threats that they might face.
Data quality is one of the most important problems in data management. A database system typically aims to support the creation, maintenance, and use of large amount of data, focusing on the quantity of data. However, real-life data are often dirty: inconsistent, duplicated, inaccurate, incomplete, or stale. Dirty data in a database routinely generate misleading or biased analytical results and decisions, and lead to loss of revenues, credibility and customers. With this comes the need for data quality management. In contrast to traditional data management tasks, data quality management enables the detection and correction of errors in the data, syntactic or semantic, in order to improve the...
A three-volume work bringing together papers presented at 'SAFEPROCESS 2003', including four plenary papers on statistical, physical-model-based and logical-model-based approaches to fault detection and diagnosis, as well as 178 regular papers.
With the ever increasing volume of data, data quality problems abound. Multiple, yet different representations of the same real-world objects in data, duplicates, are one of the most intriguing data quality problems. The effects of such duplicates are detrimental; for instance, bank customers can obtain duplicate identities, inventory levels are monitored incorrectly, catalogs are mailed multiple times to the same household, etc. Automatically detecting duplicates is difficult: First, duplicate representations are usually not identical but slightly differ in their values. Second, in principle all pairs of records should be compared, which is infeasible for large volumes of data. This lecture...
The two volume set LNAI 3801 and LNAI 3802 constitute the refereed proceedings of the annual International Conference on Computational Intelligence and Security, CIS 2005, held in Xi'an, China, in December 2005. The 338 revised papers presented - 254 regular and 84 extended papers - were carefully reviewed and selected from over 1800 submissions. The first volume is organized in topical sections on learning and fuzzy systems, evolutionary computation, intelligent agents and systems, intelligent information retrieval, support vector machines, swarm intelligence, data mining, pattern recognition, and applications. The second volume is subdivided in topical sections on cryptography and coding, cryptographic protocols, intrusion detection, security models and architecture, security management, watermarking and information hiding, web and network applications, image and signal processing, and applications.
The National Academies of Sciences, Engineering, and Medicine's Army Research Laboratory Technical Assessment Board (ARLTAB) provides biennial assessments of the scientific and technical quality of the research, development, and analysis programs at the Army Research Laboratory (ARL), focusing on ballistics sciences, human sciences, information sciences, materials sciences, and mechanical sciences. This interim report summarizes the findings of the Board for the first year of this biennial assessment; the current report addresses approximately half the portfolio for each campaign; the remainder will be assessed in 2016. During the first year the Board examined the following elements within t...
This book presents how federated learning helps to understand and learn from user activity in Internet of Things (IoT) applications while protecting user privacy. The authors first show how federated learning provides a unique way to build personalized models using data without intruding on users’ privacy. The authors then provide a comprehensive survey of state-of-the-art research on federated learning, giving the reader a general overview of the field. The book also investigates how a personalized federated learning framework is needed in cloud-edge architecture as well as in wireless-edge architecture for intelligent IoT applications. To cope with the heterogeneity issues in IoT environ...
This book includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the areas of Computer Science, Computer Engineering and Information Sciences. The book presents selected papers from the conference proceedings of the International Conference on Systems, Computing Sciences and Software Engineering (SCSS 2006). All aspects of the conference were managed on-line.