Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Advanced Bimanual Manipulation
  • Language: en
  • Pages: 284

Advanced Bimanual Manipulation

Dexterous and autonomous manipulation is a key technology for the personal and service robots of the future. Advances in Bimanual Manipulation edited by Bruno Siciliano provides the robotics community with the most noticeable results of the four-year European project DEXMART (DEXterous and autonomous dual-arm hand robotic manipulation with sMART sensory-motor skills: A bridge from natural to artificial cognition). The volume covers a host of highly important topics in the field, concerned with modelling and learning of human manipulation skills, algorithms for task planning, human-robot interaction, and grasping, as well as hardware design of dexterous anthropomorphic hands. The results described in this five-chapter collection are believed to pave the way towards the development of robotic systems endowed with dexterous and human-aware dual-arm/hand manipulation skills for objects, operating with a high degree of autonomy in unstructured real-world environments.

Nonlinear and Optimal Control Theory
  • Language: en
  • Pages: 368

Nonlinear and Optimal Control Theory

  • Type: Book
  • -
  • Published: 2008-06-24
  • -
  • Publisher: Springer

The lectures gathered in this volume present some of the different aspects of Mathematical Control Theory. Adopting the point of view of Geometric Control Theory and of Nonlinear Control Theory, the lectures focus on some aspects of the Optimization and Control of nonlinear, not necessarily smooth, dynamical systems. Specifically, three of the five lectures discuss respectively: logic-based switching control, sliding mode control and the input to the state stability paradigm for the control and stability of nonlinear systems. The remaining two lectures are devoted to Optimal Control: one investigates the connections between Optimal Control Theory, Dynamical Systems and Differential Geometry, while the second presents a very general version, in a non-smooth context, of the Pontryagin Maximum Principle. The arguments of the whole volume are self-contained and are directed to everyone working in Control Theory. They offer a sound presentation of the methods employed in the control and optimization of nonlinear dynamical systems.

Internet-based Control Systems
  • Language: en
  • Pages: 215

Internet-based Control Systems

The Internet plays a significant and growing role in real-time industrial manufacturing, scheduling and management. A considerable research effort has led to the development of new technologies that make it possible to use the Internet for supervision and control of industrial processes. Internet-based Control Systems addresses the challenges that need to be overcome before the Internet can be beneficially used not only for monitoring of but also remote control industrial plants. New design issues such as requirement specification, architecture selection and user-interface design are dealt with. Irregular data transmission and data loss and, in extreme cases, whole-system instability may res...

Control of Integral Processes with Dead Time
  • Language: en
  • Pages: 269

Control of Integral Processes with Dead Time

Control of Integral Processes with Dead Time provides a unified and coherent review of the various approaches devised for the control of integral processes, addressing the problem from different standpoints. In particular, the book treats the following topics: How to tune a PID controller and assess its performance; How to design a two-degree-of-freedom control scheme in order to deal with both the set-point following and load disturbance rejection tasks; How to modify the basic Smith predictor control scheme in order to cope with the presence of an integrator in the process; and how to address the presence of large process dead times. The methods are presented sequentially, highlighting the evolution of their rationale and implementation and thus clearly characterising them from both academic and industrial perspectives.

Induction Motor Control Design
  • Language: en
  • Pages: 362

Induction Motor Control Design

This book provides the most important steps and concerns in the design of estimation and control algorithms for induction motors. A single notation and modern nonlinear control terminology is used to make the book accessible, although a more theoretical control viewpoint is also given. Focusing on the induction motor with, the concepts of stability and nonlinear control theory given in appendices, this book covers: speed sensorless control; design of adaptive observers and parameter estimators; a discussion of nonlinear adaptive controls containing parameter estimation algorithms; and comparative simulations of different control algorithms. The book sets out basic assumptions, structural properties, modelling, state feedback control and estimation algorithms, then moves to more complex output feedback control algorithms, based on stator current measurements, and modelling for speed sensorless control. The induction motor exhibits many typical and unavoidable nonlinear features.

Active Braking Control Systems Design for Vehicles
  • Language: en
  • Pages: 269

Active Braking Control Systems Design for Vehicles

Active Braking Control Design for Road Vehicles focuses on two main brake system technologies: hydraulically-activated brakes with on–off dynamics and electromechanical brakes, tailored to brake-by-wire control. The physical differences of such actuators enjoin the use of different control schemes so as to be able fully to exploit their characteristics. The authors show how these different control approaches are complementary, each having specific peculiarities in terms of either performance or of the structural properties of the closed-loop system. They also consider other problems related to the design of braking control systems, namely: • longitudinal vehicle speed estimation and its relationship with braking control system design; • tire–road friction estimation; • direct estimation of tire–road contact forces via in-tire sensors, providing a treatment of active vehicle braking control from a wider perspective linked to both advanced academic research and industrial reality.

Tactile Sensors for Robotic Applications
  • Language: en
  • Pages: 248

Tactile Sensors for Robotic Applications

  • Type: Book
  • -
  • Published: 2021-03-17
  • -
  • Publisher: MDPI

The book covers different aspects: - Innovative technologies for tactile sensors development - Tactile data interpretation for control purposes - Alternative sensing technologies - Multi-sensor systems for grasping and manipulation - Sensing solutions for impaired people

15th European Workshop on Advanced Control and Diagnosis (ACD 2019)
  • Language: en
  • Pages: 1441

15th European Workshop on Advanced Control and Diagnosis (ACD 2019)

This book, published in two volumes, embodies the proceedings of the 15th European Workshop on Advanced Control and Diagnosis (ACD 2019) held in Bologna, Italy, in November 2019. It features contributed and invited papers from academics and professionals specializing in an important aspect of control and automation. The book discusses current theoretical research developments and open problems and illustrates practical applications and industrial priorities. With a focus on both theory and applications, it spans a wide variety of up-to-date topics in the field of systems and control, including robust control, adaptive control, fault-tolerant control, control reconfiguration, and model-based diagnosis of linear, nonlinear and hybrid systems. As the subject coverage has expanded to include cyber-physical production systems, industrial internet of things and sustainability issues, some contributions are of an interdisciplinary nature, involving ICT disciplines and environmental sciences. This book is a valuable reference for both academics and professionals in the area of systems and control, with a focus on advanced control, automation, fault diagnosis and condition monitoring.

Nonlinear Control of Vehicles and Robots
  • Language: en
  • Pages: 479

Nonlinear Control of Vehicles and Robots

Nonlinear Control of Vehicles and Robots develops a unified approach to the dynamic modeling of robots in terrestrial, aerial and marine environments. The main classes of nonlinear systems and stability methods are summarized and basic nonlinear control methods, useful in manipulator and vehicle control, are presented. Formation control of ground robots and ships is discussed. The book also deals with the modeling and control of robotic systems in the presence of non-smooth nonlinearities. Robust adaptive tracking control of robotic systems with unknown payload and friction in the presence of uncertainties is treated. Theoretical and practical aspects of the control algorithms under discussion are detailed. Examples are included throughout the book allowing the reader to apply the control and modeling techniques in their own research and development work. Some of these examples demonstrate state estimation based on the use of advanced sensors as part of the control system.

Unmanned Rotorcraft Systems
  • Language: en
  • Pages: 282

Unmanned Rotorcraft Systems

Unmanned Rotorcraft Systems explores the research and development of fully-functional miniature UAV (unmanned aerial vehicle) rotorcraft, and provides a complete treatment of the design of autonomous miniature rotorcraft UAVs. The unmanned system is an integration of advanced technologies developed in communications, computing, and control areas, and is an excellent testing ground for trialing and implementing modern control techniques. Included are detailed expositions of systematic hardware construction, software systems integration, aerodynamic modeling; and automatic flight control system design. Emphasis is placed on the cooperative control and flight formation of multiple UAVs, vision-based ground target tracking, and landing on moving platforms. Other issues such as the development of GPS-less indoor micro aerial vehicles and vision-based navigation are also discussed in depth: utilizing the vision-based system for accomplishing ground target tracking, attacking and landing, cooperative control and flight formation of multiple unmanned rotorcraft; and future research directions on the related areas.