You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This textbook, first published in 2003, emphasises the fundamentals and the mathematics underlying computer graphics. The minimal prerequisites, a basic knowledge of calculus and vectors plus some programming experience in C or C++, make the book suitable for self study or for use as an advanced undergraduate or introductory graduate text. The author gives a thorough treatment of transformations and viewing, lighting and shading models, interpolation and averaging, Bézier curves and B-splines, ray tracing and radiosity, and intersection testing with rays. Additional topics, covered in less depth, include texture mapping and colour theory. The book covers some aspects of animation, including quaternions, orientation, and inverse kinematics, and includes source code for a Ray Tracing software package. The book is intended for use along with any OpenGL programming book, but the crucial features of OpenGL are briefly covered to help readers get up to speed. Accompanying software is available freely from the book's web site.
People, problems, and proofs are the lifeblood of theoretical computer science. Behind the computing devices and applications that have transformed our lives are clever algorithms, and for every worthwhile algorithm there is a problem that it solves and a proof that it works. Before this proof there was an open problem: can one create an efficient algorithm to solve the computational problem? And, finally, behind these questions are the people who are excited about these fundamental issues in our computational world. In this book the authors draw on their outstanding research and teaching experience to showcase some key people and ideas in the domain of theoretical computer science, particul...
This volume contains articles covering a broad spectrum of proof theory, with an emphasis on its mathematical aspects. The articles should not only be interesting to specialists of proof theory, but should also be accessible to a diverse audience, including logicians, mathematicians, computer scientists and philosophers. Many of the central topics of proof theory have been included in a self-contained expository of articles, covered in great detail and depth.The chapters are arranged so that the two introductory articles come first; these are then followed by articles from core classical areas of proof theory; the handbook concludes with articles that deal with topics closely related to computer science.
Professor Stephen A. Cook is a pioneer of the theory of computational complexity. His work on NP-completeness and the P vs. NP problem remains a central focus of this field. Cook won the 1982 Turing Award for “his advancement of our understanding of the complexity of computation in a significant and profound way.” This volume includes a selection of seminal papers embodying the work that led to this award, exemplifying Cook’s synthesis of ideas and techniques from logic and the theory of computation including NP-completeness, proof complexity, bounded arithmetic, and parallel and space-bounded computation. These papers are accompanied by contributed articles by leading researchers in these areas, which convey to a general reader the importance of Cook’s ideas and their enduring impact on the research community. The book also contains biographical material, Cook’s Turing Award lecture, and an interview. Together these provide a portrait of Cook as a recognized leader and innovator in mathematics and computer science, as well as a gentle mentor and colleague.
Proof, Computation and Agency: Logic at the Crossroads provides an overview of modern logic and its relationship with other disciplines. As a highlight, several articles pursue an inspiring paradigm called 'social software', which studies patterns of social interaction using techniques from logic and computer science. The book also demonstrates how logic can join forces with game theory and social choice theory. A second main line is the logic-language-cognition connection, where the articles collected here bring several fresh perspectives. Finally, the book takes up Indian logic and its connections with epistemology and the philosophy of science, showing how these topics run naturally into each other.
HIS BOOK CONTAINS a most comprehensive text that presents syntax-directed and compositional methods for the formal veri?- T cation of programs. The approach is not language-bounded in the sense that it covers a large variety of programming models and features that appear in most modern programming languages. It covers the classes of - quential and parallel, deterministic and non-deterministic, distributed and object-oriented programs. For each of the classes it presents the various c- teria of correctness that are relevant for these classes, such as interference freedom, deadlock freedom, and appropriate notions of liveness for parallel programs. Also, special proof rules appropriate for eac...
This book constitutes the refereed proceedings of the 8th International Conference on Theory and Applications of Satisfiability Testing, SAT 2005, held in St Andrews, Scotland in June 2005. The 26 revised full papers presented together with 16 revised short papers presented as posters during the technical programme were carefully selected from 73 submissions. The whole spectrum of research in propositional and quantified Boolean formula satisfiability testing is covered including proof systems, search techniques, probabilistic analysis of algorithms and their properties, problem encodings, industrial applications, specific tools, case studies, and empirical results.
This book constitutes the thoroughly refereed conference proceedings of the 38th International Symposium on Mathematical Foundations of Computer Science, MFCS 2013, held in Klosterneuburg, Austria, in August 2013. The 67 revised full papers presented together with six invited talks were carefully selected from 191 submissions. Topics covered include algorithmic game theory, algorithmic learning theory, algorithms and data structures, automata, formal languages, bioinformatics, complexity, computational geometry, computer-assisted reasoning, concurrency theory, databases and knowledge-based systems, foundations of computing, logic in computer science, models of computation, semantics and verification of programs, and theoretical issues in artificial intelligence.
Perspicuity is part of proof. If the process by means of which I get a result were not surveyable, I might indeed make a note that this number is what comes out - but what fact is this supposed to confirm for me? I don't know 'what is supposed to come out' . . . . 1 -L. Wittgenstein A feasible computation uses small resources on an abstract computa tion device, such as a 'lUring machine or boolean circuit. Feasible math ematics concerns the study of feasible computations, using combinatorics and logic, as well as the study of feasibly presented mathematical structures such as groups, algebras, and so on. This volume contains contributions to feasible mathematics in three areas: computational...