You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents novel techniques, current trends, and cutting-edge technologies in energy and biochemical processes. The authors explore recent advances that solve challenges related to the implications and commercialization of these processes by introducing new techniques or modifying existing technologies to meet future demands for food materials, bioproducts, fossil fuels, biofuels, and bioenergy. Divided into three parts, the first section of the book addresses issues related to the utilization and management of energy towards the efficient characterization and conversion of wastes or raw-/bio- materials to useful products. The second section focuses largely on studies on molecular detection of analytes, purification, and characterization of products recovered from biochemical, enzymatic, food, and phytochemicals, as well as biostimulation and bioaugmentation processes. The final section discusses areas related to heat and mass transfer, fuel processing technologies, nanofluids, and their applications.
The field of polymer nanocomposites has become essential for engineering and military industries over the last few decades as it applies to computing, sensors, biomedical microelectronics, hard coating, and many other domains. Due to their outstanding mechanical and thermal features, polymer nanocomposite materials have recently been developed and now have a wide range of applications. Polymer Nanocomposites for Advanced Engineering and Military Applications provides emerging research on recent advances in the fabrication methods, properties, and applications of various nano-fillers including surface-modification methods and chemical functionalization. Featuring coverage on a broad range of topics such as barrier properties, biomedical microelectronics, and matrix processing, this book is ideally designed for engineers, industrialists, chemists, government officials, military professionals, practitioners, academicians, researchers, and students.
This book gives a comprehensive overview of bionanocomposites, a class of materials that consist of a biopolymer matrix which is embedded with nanoparticles and natural fibres as reinforcement to produce novel material and achieve superior physico-chemical and mechanical properties. The book looks into the synthesis of various forms of nanoparticles, the fabrication methods, and the characterization of bionanocomposites. It also includes topics related to the sustainability and life prediction of bionanocomposites such as biodegradability, recycling, and re-use. An important aspect in the designing of bionanocomposites includes computational modeling, and the suitability of the bionanocomposites in various applications is presented. This book appeals to students, researchers, and scientists looking to gain fundamental knowledge, know about recent advancements in the research on bionanocomposites and their applications.
The purification of hydrogen is necessary to fulfill purity standards of a wide variety of prospective uses, and it is also a key concern regarding the efficient supply of hydrogen. Hydrogen Purification and Separation reviews various hydrogen separation methods as well as membranes used in hydrogen separation. It discusses absorption and adsorption methods, as well as novel technologies such as cryogenic methods and plasma‐assisted technology, and the related economic assessments and environmental challenges. Introduces miscellaneous membrane‐assisted processes for hydrogen separation Provides different physiochemical absorption methods for hydrogen purification Discusses application of sorbents and swing technologies in hydrogen purification Uniquely covers hydrogen separation using novel methods Includes economic assessments and environmental challenges of hydrogen purification in detail Part of the multivolume Handbook of Hydrogen Production and Applications, this standalone book guides researchers and academics in chemical, environmental, energy, and related areas of engineering interested in development and implementation of hydrogen production technologies.
Military technology is highly advanced in terms of technology being used in the field, computer applications, artificial intelligence, and software applications. These high-performance technologies range from weapons to communications technology to automation in vehicles and weaponry. These technologies must be both secure and reliable in harsh environments. Research is being focused specifically on that, including how military and defense applications operate, what modern technologies are being used, and the ethics surrounding these applications. A holistic view of these applications is necessary for both understanding current military tactics and tools along with the future applications. T...
The success of hydrogen energy markets depends on developing efficient hydrogen storage and transportation methods. Hydrogen may be stored in various ways, including compression, liquefaction, adsorption, hydrides, and reformed fuels. Hydrogen’s application, transport method, storage time, and other factors all have an impact on the technology choices available for its long‐term storage. This book comprehensively reviews hydrogen storage and transportation technologies along with related safety hazards and challenges. Introduces hydrogen storage and transportation materials and standards Includes miscellaneous hydrogen storage methods Covers different hydrogen transportation technologies Comprehensively describes hydrogen storage and transportation safety considerations Provides economic assessments and environmental challenges related to hydrogen storage and transportation Part of the multivolume Handbook of Hydrogen Production and Applications, this standalone book guides researchers and academics in chemical, environmental, energy, and related areas of engineering interested in development and implementation of hydrogen production technologies.
This book is based on advanced combustion technologies currently employed in internal combustion engines. It discusses different strategies for improving conventional diesel combustion. The volume includes chapters on low-temperature combustion techniques of compression-ignition engines which results in significant reduction of NOx and soot emissions. The content also highlights newly evolved gasoline compression technology and optical techniques in advanced gasoline direct injection engines. the research and its outcomes presented here highlight advancements in combustion technologies, analysing various issues related to in-cylinder combustion, pollutant formation and alternative fuels. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine combustion research.
Recent Advances in Biosensor Technology (Volume 1) is a comprehensive guide to the latest developments in biosensor technology, written by experts in bioengineering and biosensor development. The book is an essential resource for researchers and biomedical engineers interested in the latest developments in biosensor technology. It covers a wide range of topics, including nanomaterials for biosensing applications, carbon-based nanomaterials for sensing applications, graphene-based nanomaterials, SPR-based biosensors in diagnostics and therapeutics, biosensors for cancer diagnosis and therapeutics, tissue engineering and more. One of the key features of this book is its detailed discussion of the novel research findings in biosensor technology, providing readers with the most up-to-date information in the field. Each chapter includes a comprehensive review of relevant literature, as well as practical examples to demonstrate the potential applications of biosensors in various fields. Furthermore, this book includes detailed references for further reading, making it an excellent resource for readers looking to deepen their understanding of biosensor technology.
The use of nanotechnologies continues to grow, as nanomaterials have proven their versatility and use in many different fields and industries within the scientific profession. Using nanotechnology, materials can be made lighter, more durable, more reactive, and more efficient leading nanoscale materials to enhance many everyday products and processes. With many different sizes, shapes, and internal structures, the applications are endless. These uses range from pharmaceutics to materials such as cement or cloth, electronics, environmental sustainability, and more. Therefore, there has been a recent surge of research focused on the synthesis and characterizations of these nanomaterials to bet...
This book focuses on low carbon fuels a preferable class of fuels for Internal Combustion Engines (ICEs) highlighting the effect of low carbon fuels on tailpipe emissions. This book aims to strengthen the knowledge base dealing with low carbon fuels as a sustainable transport fuel. The volume includes recent results and are focused on current trends of automotive sector. This book will be of interest to those in academia and industry involved in fuels, IC engines, engine instrumentation, and environmental research.