You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is devoted to new classes of parabolic differential and pseudo-differential equations extensively studied in the last decades, such as parabolic systems of a quasi-homogeneous structure, degenerate equations of the Kolmogorov type, pseudo-differential parabolic equations, and fractional diffusion equations. It will appeal to mathematicians interested in new classes of partial differential equations, and physicists specializing in diffusion processes.
The present monograph is devoted to the theory of general parabolic boundary value problems. The vastness of this theory forced us to take difficult decisions in selecting the results to be presented and in determining the degree of detail needed to describe their proofs. In the first chapter we define the basic notions at the origin of the theory of parabolic boundary value problems and give various examples of illustrative and descriptive character. The main part of the monograph (Chapters II to V) is devoted to a the detailed and systematic exposition of the L -theory of parabolic 2 boundary value problems with smooth coefficients in Hilbert spaces of smooth functions and distributions of...
This volume contains a selection of papers, from experts in the area, on multidimensional operator theory. Topics considered include the non-commutative case, function theory in the polydisk, hyponormal operators, hyperanalytic functions, and holomorphic deformations of linear differential equations. Operator Theory, Systems Theory and Scattering Theory will be of interest to a wide audience of pure and applied mathematicians, electrical engineers and theoretical physicists.
This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.
As the title of the book indicates, this is primarily a book on partial differential equations (PDEs) with two definite slants: toward inverse problems and to the inclusion of fractional derivatives. The standard paradigm, or direct problem, is to take a PDE, including all coefficients and initial/boundary conditions, and to determine the solution. The inverse problem reverses this approach asking what information about coefficients of the model can be obtained from partial information on the solution. Answering this question requires knowledge of the underlying physical model, including the exact dependence on material parameters. The last feature of the approach taken by the authors is the...
This book discusses numerical methods for solving time-fractional evolution equations. The approach is based on first discretizing in the spatial variables by the Galerkin finite element method, using piecewise linear trial functions, and then applying suitable time stepping schemes, of the type either convolution quadrature or finite difference. The main concern is on stability and error analysis of approximate solutions, efficient implementation and qualitative properties, under various regularity assumptions on the problem data, using tools from semigroup theory and Laplace transform. The book provides a comprehensive survey on the present ideas and methods of analysis, and it covers most important topics in this active area of research. It is recommended for graduate students and researchers in applied and computational mathematics, particularly numerical analysis.
None
None