Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Number Theory Meets Wireless Communications
  • Language: en
  • Pages: 281

Number Theory Meets Wireless Communications

This volume explores the rich interplay between number theory and wireless communications, reviewing the surprisingly deep connections between these fields and presenting new research directions to inspire future research. The contributions of this volume stem from the Workshop on Interactions between Number Theory and Wireless Communication held at the University of York in 2016. The chapters, written by leading experts in their respective fields, provide direct overviews of highly exciting current research developments. The topics discussed include metric Diophantine approximation, geometry of numbers, homogeneous dynamics, algebraic lattices and codes, network and channel coding, and inte...

Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot
  • Language: en
  • Pages: 758

Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot

This volume offers an excellent selection of cutting-edge articles about fractal geometry, covering the great breadth of mathematics and related areas touched by this subject. Included are rich survey articles and fine expository papers. The high-quality contributions to the volume by well-known researchers--including two articles by Mandelbrot--provide a solid cross-section of recent research representing the richness and variety of contemporary advances in and around fractal geometry. In demonstrating the vitality and diversity of the field, this book will motivate further investigation into the many open problems and inspire future research directions. It is suitable for graduate students and researchers interested in fractal geometry and its applications. This is a two-part volume. Part 1 covers analysis, number theory, and dynamical systems; Part 2, multifractals, probability and statistical mechanics, and applications.

Sums of Reciprocals of Fractional Parts and Multiplicative Diophantine Approximation
  • Language: en
  • Pages: 92
Measure Theoretic Laws for lim sup Sets
  • Language: en
  • Pages: 110

Measure Theoretic Laws for lim sup Sets

Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\p$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarník concerning $W(\psi)$ fall into our general framework. The main res...

Weil-Petersson Metric on the Universal Teichmuller Space
  • Language: en
  • Pages: 136

Weil-Petersson Metric on the Universal Teichmuller Space

In this memoir, we prove that the universal Teichmuller space $T(1)$ carries a new structure of a complex Hilbert manifold and show that the connected component of the identity of $T(1)$ -- the Hilbert submanifold $T {0 (1)$ -- is a topological group. We define a Weil-Petersson metric on $T(1)$ by Hilbert space inner products on tangent spaces, compute its Riemann curvature tensor, and show that $T(1)$ is a Kahler-Einstein manifold with negative Ricci and sectional curvatures. We introduce and compute Mumford-Miller-Morita characteristic forms for the vertical tangent bundle of the universal Teichmuller curve fibration over the universal Teichmuller space. As an application, we derive Wolper...

Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls
  • Language: en
  • Pages: 178

Carleson Measures and Interpolating Sequences for Besov Spaces on Complex Balls

Contents: A tree structure for the unit ball $mathbb B? n$ in $mathbb C'n$; Carleson measures; Pointwise multipliers; Interpolating sequences; An almost invariant holomorphic derivative; Besov spaces on trees; Holomorphic Besov spaces on Bergman trees; Completing the multiplier interpolation loop; Appendix; Bibliography

Operator Theory on One-Sided Quaternion Linear Spaces: Intrinsic $S$-Functional Calculus and Spectral Operators
  • Language: en
  • Pages: 114

Operator Theory on One-Sided Quaternion Linear Spaces: Intrinsic $S$-Functional Calculus and Spectral Operators

Two major themes drive this article: identifying the minimal structure necessary to formulate quaternionic operator theory and revealing a deep relation between complex and quaternionic operator theory. The theory for quaternionic right linear operators is usually formulated under the assumption that there exists not only a right- but also a left-multiplication on the considered Banach space $V$. This has technical reasons, as the space of bounded operators on $V$ is otherwise not a quaternionic linear space. A right linear operator is however only associated with the right multiplication on the space and in certain settings, for instance on quaternionic Hilbert spaces, the left multiplication is not defined a priori, but must be chosen randomly. Spectral properties of an operator should hence be independent of the left multiplication on the space.

Łojasiewicz-Simon Gradient Inequalities for Coupled Yang-Mills Energy Functionals
  • Language: en
  • Pages: 158

Łojasiewicz-Simon Gradient Inequalities for Coupled Yang-Mills Energy Functionals

The authors' primary goal in this monograph is to prove Łojasiewicz-Simon gradient inequalities for coupled Yang-Mills energy functions using Sobolev spaces that impose minimal regularity requirements on pairs of connections and sections.

Theory of Fundamental Bessel Functions of High Rank
  • Language: en
  • Pages: 138

Theory of Fundamental Bessel Functions of High Rank

In this article, the author studies fundamental Bessel functions for $mathrm{GL}_n(mathbb F)$ arising from the Voronoí summation formula for any rank $n$ and field $mathbb F = mathbb R$ or $mathbb C$, with focus on developing their analytic and asymptotic theory. The main implements and subjects of this study of fundamental Bessel functions are their formal integral representations and Bessel differential equations. The author proves the asymptotic formulae for fundamental Bessel functions and explicit connection formulae for the Bessel differential equations.

An Introduction to Number Theory
  • Language: en
  • Pages: 296

An Introduction to Number Theory

Includes up-to-date material on recent developments and topics of significant interest, such as elliptic functions and the new primality test Selects material from both the algebraic and analytic disciplines, presenting several different proofs of a single result to illustrate the differing viewpoints and give good insight