You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces entirely new invariants never considered before, in homological algebra and commutative (and even non-commutative) algebra. The C-completion C(M), and higher C-completions, Cn(M), are defined for an arbitrary left module M over a topological ring A. Spectral sequences are defined that use these invariants. Given a left module over a topological ring A, under mild conditions the usual Hausdorff completion: M^ can be recovered from the C-completion C(M), by taking the quotient module by the closure of {0}.The new invariants and tools in this book are expected to be used in the study of p-adic cohomology in algebraic geometry; and also in the study of p-adic Banach spaces — by replacing the cumbersome 'complete tensor product' of p-adic Banach spaces, with the more sophisticated 'C-complete tensor product', discussed in this book.It is also not unlikely that the further study of these new invariants may well develop into a new branch of abstract mathematics - connected with commutative algebra, homological algebra, and algebraic topology.
There has been a common perception that computational complexity is a theory of "bad news" because its most typical results assert that various real-world and innocent-looking tasks are infeasible. In fact, "bad news" is a relative term, and, indeed, in some situations (e.g., in cryptography), we want an adversary to not be able to perform a certain task. However, a "bad news" result does not automatically become useful in such a scenario. For this to happen, its hardness features have to be quantitatively evaluated and shown to manifest extensively.The book undertakes a quantitative analysis of some of the major results in complexity that regard either classes of problems or individual conc...
All the existing books in Infinite Dimensional Complex Analysis focus on the problems of locally convex spaces. However, the theory without convexity condition is covered for the first time in this book. This shows that we are really working with a new, important and interesting field.Theory of functions and nonlinear analysis problems are widespread in the mathematical modeling of real world systems in a very broad range of applications. During the past three decades many new results from the author have helped to solve multiextreme problems arising from important situations, non-convex and non linear cases, in function theory.Foundations of Complex Analysis in Non Locally Convex Spaces is ...
This dissertation studies the logic behind quantum physics, using category theory as the principal tool and conceptual guide. To do so, principles of quantum mechanics are modeled categorically. These categorical quantum models are justified by an embedding into the category of Hilbert spaces, the traditional formalism of quantum physics. In particular, complex numbers emerge without having been prescribed explicitly. Interpreting logic in such categories results in orthomodular property lattices, and furthermore provides a natural setting to consider quantifiers. Finally, topos theory, incorporating categorical logic in a refined way, lets one study a quantum system as if it were classical, in particular leading to a novel mathematical notion of quantum-
Saunders Mac Lane was an extraordinary mathematician, a dedicated teacher, and a good citizen who cared deeply about the values of science and education. In his autobiography, he gives us a glimpse of his "life and times," mixing the highly personal with professional observations. His recollections bring to life a century of extraordinary accomplis
Founded in 1884, Annals of Mathematics publishes research papers in pure mathematics.
This work inaugurates a new and general solution method for arbitrary continuous nonlinear PDEs. The solution method is based on Dedekind order completion of usual spaces of smooth functions defined on domains in Euclidean spaces. However, the nonlinear PDEs dealt with need not satisfy any kind of monotonicity properties. Moreover, the solution method is completely type independent. In other words, it does not assume anything about the nonlinear PDEs, except for the continuity of their left hand term, which includes the unkown function. Furthermore the right hand term of such nonlinear PDEs can in fact be given any discontinuous and measurable function.
Cohomology of Completions
None