You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Written by a "who is who" of leading organic chemists, this anniversary volume represent the Organic Reactions editors' choice of the most important, ground-breaking and versatile reactions in current organic synthesis. The 15 reaction types selected for this volume include reactions for carbon-carbon bond formation, cross-coupling reactions, hydro- and halofunctionalizations, among many others. In line with the successful recipe of the series, each chapter is focused on a single reaction, discussing its mechanism and stereochemistry, scope and limitations, applications to synthesis, comparison with other methods, and experimental procedures. Each chapter concludes with a tabular survey of selected key application examples, complete with reported reaction conditions and yields, to serve as a quick reference guide for synthesis planning.
The carbonyl group is undoubtedly one of the most important functional groups in organic chemistry, both in its role as reactive center for synthesis or derivatisation and as crucial feature for special structural or physiological properties. Vast and profound progress has been made in all aspects modern carbonyl chemistry. These achievements are, however, rather dispersed in the literature and it is often not easy for the researcher obtain a comprehensive overview of a relevant topic. Modern Carbonyl Chemistry overcomes this inconvenience by collating the information for appropriate themes. In this work internationally renowned experts and leaders in the field have surveyed recent aspects and modern features in carbonyl chemistry, such as cascade-reactions, one-pot-syntheses, recognition, or site differentiation.
Dipolar cycloaddition reactions have found many useful applications in chemistry, particularly with respect to the synthesis of compounds with new chiral centers. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry Toward Heterocycles and Natural Products updates the popular 1984 edition, featuring the advances made over the past twenty years and focusing on synthetic applications.
Find an easier way to learn organic chemistry with Arrow-Pushing in Organic Chemistry: An Easy Approach to Understanding Reaction Mechanisms, a book that uses the arrow-pushing strategy to reduce this notoriously challenging topic to the study of interactions between organic acids and bases. Understand the fundamental reaction mechanisms relevant to organic chemistry, beginning with Sn2 reactions and progressing to Sn1 reactions and other reaction types. The problem sets in this book, an excellent supplemental text, emphasize the important aspects of each chapter and will reinforce the key ideas without requiring memorization.
Demonstrates the wide scope of cycloaddition reactions, including the Diels-Alder reaction, the ene reaction, 1,3-dipolar cycloadditions and [2+2] cycloadditions in organic synthesis. The author, a leading exponent of the subject, illustrates the ways in which they can be employed in the synthesis of a wide range of carbocyclic and heterocyclic compounds, including a variety of natural products of various types. Special attention is given to intramolecular reactions, which often provide a rapid and efficient route to polycyclic compounds, and to the stereochemistry of the reactions, including recent and developing work on enantioselective synthesis.
Topics in Stereochemistry, previously edited by "the father of stereochemistry" Ernest L. Eliel, is a longstanding, successful series covering the most important advances in the field. The much-anticipated Volume 25 includes chapters on the following topics: * Stereochemistry of Molecules in Inclusion Crystals * Torsional Motion of Stilbene-type Molecules in Crystals * Supramolecular Networks of Porphyrins * Homo- and Heterochirality in Crystals * Supramolecular Synthesis of 1D Chains and 2D Layers in Hydrogen Bond Networks of Ureas and 2-D Pyrimidinones * Chiral Auxiliaries Powerful for Both Enantioresolution and Determination of Absolutely Stereochemistry by X-Ray Crystallograph * Engineering Stereospecific Reactoins in Crystals: Synthesis of Compounds with Adjacent Stereogenic Quaternary Centers by Photodecarbonylation of Crystalline Ketones * The CH/ Hydrogen Bond: An Important Molecular Force in Controlling the Crystal Conformation of Organic Compounds and Three-Dimensional Structure of Biopolymers * Stereoselective Thermal Solid-State Reactions * Crystal Structures and Functionalities of Platinum (II) Complexes Controlled by Various Intermolecular Interactions
Carbon-carbon bond forming reactions are arguably the most important processes in chemistry, as they represent key steps in the building of complex molecules from simple precursors. Among these reactions, metal-catalyzed cross-coupling reactions are extensively employed in a wide range of areas of preparative organic chemistry, ranging from the synthesis of complex natural products, to supramolecular chemistry, and materials science. In this work, a dozen internationally renowned experts and leaders in the field bring the reader up to date by documenting and critically analyzing current developments and uses of metal-catalyzed cross-coupling reactions. A particularly attractive and useful feature, that enhances the practical value of this monograph, is the inclusion of key synthetic protocols, in experimental format, chosen for broad utility and application. This practice-oriented book can offer the practitioner short cuts to ensure they remain up-to-date with the latest developments.
The second edition of this classic text book has been completely revised, updated, and extended to include chapters on biomimetic amination reactions, Wacker oxidation, and useful domino reactions. The first-class author team with long-standing experience in practical courses on organic chemistry covers a multitude of preparative procedures of reaction types and compound classes indispensable in modern organic synthesis. Throughout, the experiments are accompanied by the theoretical and mechanistic fundamentals, while the clearly structured sub-chapters provide concise background information, retrosynthetic analysis, information on isolation and purification, analytical data as well as current literature citations. Finally, in each case the synthesis is labeled with one of three levels of difficulty. An indispensable manual for students and lecturers in chemistry, organic chemists, as well as lab technicians and chemists in the pharmaceutical and agrochemical industries.
This title provides a forum for investigators to discuss their approach to the science and art of organic synthesis in a unique way. There are stories that vividly demonstrate the power of the human endeavour known as organic synthesis and the creativity and tenacity of its practitioners.
The two chapters in Volume 84 describe transition metal catalyzed processes that form carbon-carbon bonds and carbon-oxygen bonds in very interesting and practical ways. The first chapter authored by Christina Moberg describes an important subset of one of the earliest and most important enantioselective carbon-carbon bond forming reactions that employ transition metal complexes, namely molybdenum-catalyzed, asymmetric allylic alkylations. The second chapter authored by Brian W. Michel, Laura D. Steffens, and Matthew S. Sigman deals with one of the oldest examples of transition metal catalyzed oxidation, known as the Wacker process.