You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Forest land managers face the challenges of preparing their forests for the impacts of climate change. However, climate change adds a new dimension to the task of developing and testing science-based management options to deal with the effects of stressors on forest ecosystems in the southern United States. The large spatial scale and complex inter
Scientists and managers alike need timely, cost-effective, and technically appropriate fire-related information to develop functional strategies for the diverse fire communities. "Remote Sensing Modeling and Applications to Wildland Fires" addresses wildland fire management needs by presenting discussions that link ecology and the physical sciences from local to regional levels, views on integrated decision support data for policy and decision makers, new technologies and techniques, and future challenges and how remote sensing might help to address them. While creating awareness of wildland fire management and rehabilitation issues, hands-on experience in applying remote sensing and simulation modeling is also shared. This book will be a useful reference work for researchers, practitioners and graduate students in the fields of fire science, remote sensing and modeling applications. Professor John J. Qu works at the Department of Geography and GeoInformation Science at George Mason University (GMU), USA. He is the Founder and Director of the Environmental Science and Technology Center (ESTC) and EastFIRE Lab at GMU.
This book includes contributions from scientists and representatives from government and non-governmental organisations working in the field of land management and use and on management of fires. The book is truly interdisciplinary and has both a research and application-oriented dimension. The list of topics includes sustainability and water management; sustainability and biodiversity conservation; the future sustainability of nature-based industries such as agriculture, mining, tourism, fisheries and forestry; sustainability, people and livelihoods; sustainability and landscapes planning; sustainability and land use planning; handling and managing forest fires. The papers are innovative and cross-cutting, and many have practice-based experiences. Also, this book, prepared by the Inter-University Sustainable Development Research Programme (IUSDRP) and the World Sustainable Development Research and Transfer Centre (WSD-RTC), reiterates the need to promote a sustainable use of land resources today.
Recent developments in air pollution modelling are explored as a series of contributions from researchers at the forefront of their field. This book on air pollution modelling and its application is focused on local, urban, regional and intercontinental modelling; data assimilation and air quality forecasting; model assessment and evaluation; aerosol transformation; the relationship between air quality and human health and the effects of climate change on air quality. It consists of a series of papers that were presented at the 30th NATO/SPS International Technical Meeting on Air Pollution Modelling and its Application held in San Francisco, U.S.A., May 18-22, 2009. It is intended as reference material for students and professors interested in air pollution modelling at the graduate level as well as researchers and professionals involved in developing and utilizing air pollution models.
Designed for the 21st century classroom, this textbook poses, refines, and analyzes questions of sustainability in a quantitative environment. Building mathematical knowledge in the context of issues relevant to every global citizen today, this text takes an approach that empowers students of all disciplines to understand and reason with quantitative information. Whatever conclusions may be reached on a given topic, this book will prepare the reader to think critically about their own and other people’s arguments and to support them with careful, mathematical reasoning. Topics are grouped in themes of measurement, flow, connectivity, change, risk, and decision-making. Mathematical thinking...
A troubling story of the devastating and compounding effects of climate change in the Western and Rocky Mountain states, told through in–depth reportage and conversations with ecologists, professional forest managers, park service scientists, burn boss, activists, and more. Climate change manifests in many ways across North America, but few as dramatic as the attacks on our western pine forests. In Trees in Trouble, Daniel Mathews tells the urgent story of this loss, accompanying burn crews and forest ecologists as they study the myriad risk factors and refine techniques for saving this important, limited resource. Mathews transports the reader from the exquisitely aromatic haze of pondero...
Current developments in air pollution modeling are explored as a series of contributions from researchers at the forefront of their field. This newest contribution on air pollution modeling and its application is focused on local, urban, regional and intercontinental modeling; emission modeling and processing; data assimilation and air quality forecasting; model assessment and evaluation; atmospheric aerosols. Additionally, this work also examines the relationship between air quality and human health and the effects of climate change on air quality. This work is a collection of selected papers presented at the 36th International Technical Meeting on Air Pollution Modeling and its Application, held in Ottawa, Canada, May 14-18, 2018. The book is intended as reference material for students and professors interested in air pollution modeling at the graduate level as well as researchers and professionals involved in developing and utilizing air pollution models.
This open access book synthesizes current information on wildland fire smoke in the United States, providing a scientific foundation for addressing the production of smoke from wildland fires. This will be increasingly critical as smoke exposure and degraded air quality are expected to increase in extent and severity in a warmer climate. Accurate smoke information is a foundation for helping individuals and communities to effectively mitigate potential smoke impacts from wildfires and prescribed fires. The book documents our current understanding of smoke science for (1) primary physical, chemical, and biological issues related to wildfire and prescribed fire, (2) key social issues, including human health and economic impacts, and (3) current and anticipated management and regulatory issues. Each chapter provides a summary of priorities for future research that provide a roadmap for developing scientific information that can improve smoke and fire management over the next decade.
Recent developments in air pollution modeling and its application are explored here in contributions by researchers at the forefront of their field. The book is focused on local, urban, regional and intercontinental modeling; data assimilation and air quality forecasting; model assessment and evaluation; aerosol transformation; the relationship between air quality and human health and the interaction between climate change and air quality. The work will provide useful reference material for students and professors interested in air pollution modeling at the graduate level as well as researchers and professionals involved in developing and utilizing air pollution models.