You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is about constructing models from experimental data. It covers a range of topics, from statistical data prediction to Kalman filtering, from black-box model identification to parameter estimation, from spectral analysis to predictive control. Written for graduate students, this textbook offers an approach that has proven successful throughout the many years during which its author has taught these topics at his University. The book: Contains accessible methods explained step-by-step in simple terms Offers an essential tool useful in a variety of fields, especially engineering, statistics, and mathematics Includes an overview on random variables and stationary processes, as well as an introduction to discrete time models and matrix analysis Incorporates historical commentaries to put into perspective the developments that have brought the discipline to its current state Provides many examples and solved problems to complement the presentation and facilitate comprehension of the techniques presented
This book offers a comprehensive treatment of the theory of periodic systems, including the problems of filtering and control. It covers an array of topics, presenting an overview of the field and focusing on discrete-time signals and systems.
This thesis addresses optimal control of discrete-time switched linear systems with application to networked embedded control systems (NECSs). Part I focuses on optimal control and scheduling of discrete-time switched linear systems. The objective is to simultaneously design a control law and a switching (scheduling) law such that a cost function is minimized. This optimization problem exhibits exponential complexity. Taming the complexity is a major challenge. Two novel methods are presented to approach this optimization problem: Receding-horizon control and scheduling relies on the receding horizon principle. The optimization problem is solved based on relaxed dynamic programming, allowing...
Conceived by Count Jacopo Francesco Riccati more than a quarter of a millennium ago, the Riccati equation has been widely studied in the subsequent centuries. Since its introduction in control theory in the sixties, the matrix Riccati equation has known an impressive range of applications, such as optimal control, H? optimization and robust stabilization, stochastic realization, synthesis of linear passive networks, to name but a few. This book consists of 11 chapters surveying the main concepts and results related to the matrix Riccati equation, both in continuous and discrete time. Theory, applications and numerical algorithms are extensively presented in an expository way. As a foreword, the history and prehistory of the Riccati equation is concisely presented.
This Festschrift is intended as a homage to our esteemed colleague, friend and maestro Giorgio Picci on the occasion of his sixty-?fth birthday. We have knownGiorgiosince our undergraduatestudies at the University of Padova, wherewe?rst experiencedhisfascinatingteachingin theclass ofSystem Identi?cation. While progressing through the PhD program, then continuing to collaborate with him and eventually becoming colleagues, we have had many opportunitiesto appreciate the value of Giorgio as a professor and a scientist, and chie?y as a person. We learned a lot from him and we feel indebted for his scienti?c guidance, his constant support, encouragement and enthusiasm. For these reasons we are pr...
Praise for the Series:"This book will be a useful reference to control engineers and researchers. The papers contained cover well the recent advances in the field of modern control theory."--IEEE Group Correspondence"This book will help all those researchers who valiantly try to keep abreast of what is new in the theory and practice of optimal control."--Control
Data Approximation by Low-complexity Models details the theory, algorithms, and applications of structured low-rank approximation. Efficient local optimization methods and effective suboptimal convex relaxations for Toeplitz, Hankel, and Sylvester structured problems are presented. Much of the text is devoted to describing the applications of the theory including: system and control theory; signal processing; computer algebra for approximate factorization and common divisor computation; computer vision for image deblurring and segmentation; machine learning for information retrieval and clustering; bioinformatics for microarray data analysis; chemometrics for multivariate calibration; and psychometrics for factor analysis. Software implementation of the methods is given, making the theory directly applicable in practice. All numerical examples are included in demonstration files giving hands-on experience and exercises and MATLAB® examples assist in the assimilation of the theory.
Although the problem of nonlinear controller design is as old as that of linear controller design, the systematic design methods framed in response are more sparse. Given the range and complexity of nonlinear systems, effective new methods of control design are therefore of significant importance. Dynamic Surface Control of Uncertain Nonlinear Systems provides a theoretically rigorous and practical introduction to nonlinear control design. The convex optimization approach applied to good effect in linear systems is extended to the nonlinear case using the new dynamic surface control (DSC) algorithm developed by the authors. A variety of problems – DSC design, output feedback, input saturat...
Distributed Coordination of Multi-agent Networks introduces problems, models, and issues such as collective periodic motion coordination, collective tracking with a dynamic leader, and containment control with multiple leaders, and explores ideas for their solution. Solving these problems extends the existing application domains of multi-agent networks; for example, collective periodic motion coordination is appropriate for applications involving repetitive movements, collective tracking guarantees tracking of a dynamic leader by multiple followers in the presence of reduced interaction and partial measurements, and containment control enables maneuvering of multiple followers by multiple leaders.
Euromech 357 took place in the nice authentic monastery 'Rolduc' in Kerkrade, Holland. The objective was to bring together researchers to present their latest advancements in the relatively new domain of Material properties identification by Mixed Numerical Experimental Methods (MMM). MMM are a modem and increasingly powerful way to determine the values of unknown parameters in a numerical model by observations made on real physical test structures. Starting from the measurement of output values (like displacements, stresses, velocities, vibrations, .. ) of the real physical test structure, MMM try to update parameters in the numerical model in such a way that the computed observations match...