You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The focus of this book lies at the meeting point of electromagnetic waveguides and photonic crystals. Although these are both widely studied topics, they have been kept apart until recently. The purpose of the first edition of this book was to give state-of-the-art theoretical and numerical viewpoints about exotic fibres which use “photonic crystal effects” and consequently exhibit some remarkable properties.Since that first edition, photonic crystal fibres have become an important and effective optical device. In this second edition, the description of the theoretical and numerical tools used to study these fibres is enhanced, whilst up-to-date information about the properties, applications and fabrication of these fibres is added./a
Astrophotonics is the application of photonics to astronomical instrumentation. It is a rapidly developing field that takes a new approach to instrumentation, in which the bulk optics of traditional instruments, such as lenses, mirrors, and diffraction gratings, are replaced with devices embedded within waveguides. This enables instruments that are smaller, modular, more stable, and most excitingly, with optical capabilities not possible with traditional instruments.Astrophotonics has reached a stage of development where many prototype devices are now being tested on sky, and the first fully-fledged instruments incorporating photonic devices are now being used for observations. The field is thus transitioning from one of instrumental research and development to mainstream observational astrophysics.This is the first book focussed on astrophotonics, written by three experts in the field. Beginning with a sound introduction to the basic principles of astrophotonics, it is intended to communicate the current status, potential, and future possibilities of astrophotonics to the wider astronomical, optics and photonics communities.
The importance and necessity of communications systems have become evident during the COVID-19 pandemic. The development of new technologies that permit the best performance of these systems is paramount, and optical fibers play an important role in this area. This book examines new technological developments to improve optical fiber technology, with applications in communications systems, optoelectronics integration, and the scientific study of live microorganisms such as bacteria, viruses, fungi, and protozoa.
What is a plasmon? Is it a particle, like a photon or a wave? Plasmonics stands at the frontier of condensed matter physics, which is the world of electrons, optics and of photons. Plasmonics is one of the most active fields in nanophotonics. This book begins by exploring the concepts behind waves, and the electromagnetic description of light when it interacts with metals; it dedicates every chapter thereafter to all aspects of plasmonics. In particular, the surface plasmon polariton wave is explained in full detail, as well as the localized surface plasmon resonance of metallic nanoparticles. The active research area opened by plasmonics, as well as its applications, are also briefly explai...
Optical Fiber Current and Voltage Sensors is the first book to provide a complete, comprehensive and up to date treatment of the domain of fiber optic and polarimetric sensors, covering fundamental operating principles, characteristics, and construction. Written by one of the most recognised experts in polarimetric sensing, Optical Fiber Current and Voltage Sensors begins by covering the fundamentals of polarized light, as well as essential sensor components. The author then goes on to outline various sensor types and their applications, with a focus on sensors for electric phenomena. The chapters then lay out the demands that sensors need to meet, the technical obstacles and limitations whi...
None
Our goal is to produce a comprehensive handbook of the current state of the art of astronomical instrumentation with a forward view encompassing the next decade. The target audience is graduate students with an interest in astronomical instrumentation, as well as practitioners interested in learning about the state of the art in another wavelength band or field closely related to the one in which they currently work. We assume a working knowledge of the fundamental theory: optics, semiconductor physics, etc. The purpose of this handbook is to bring together some of the leading experts in the world to discuss the frontier of astronomical instrumentation across the electromagnetic spectrum and extending into multimessenger astronomy.