You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A state-of-the-art review of the molecular underpinnings of bone-seeking cancers, current treatment approaches for them, and future therapeutic strategies. The authors illuminate the role of various autocrine, paracrine, and immunological factors involved in the progression and establishment of bone metastases, highlighting the physiological processes that lead to bone degradation, pain, angiogenesis, and dysregulation of bone turnover. They also discuss the various strategies that appear to have promise and are currently deployed in treatment or are at the experimental stage.
Expert bench and clinical scientists join forces to concurrently review both the state-of-the-art in tumor immunology and its clinical translation into promising practical treatments. The authors explain in each chapter the scientific basis behind such therapeutic agents as monoclonal antibodies, cytokines, vaccines, and T-cells, and illustrate their clinical manipulation to combat cancer. Additional chapters address statistical analysis-both of clinical trials and assay evaluations-methods for the discovery of antigens, adoptive T cell therapy, and adaptive and innate immunity. The challenges in clinical trial design, the need for biomarkers of response-such as novel imaging techniques and immunologic monitoring-and the new advances and directions in cancer immunotherapy are also fully examined.
Leading experts summarize and synthesize the latest discoveries concerning the changes that occur in tumor cells as they develop resistance to anticancer drugs, and suggest new approaches to preventing and overcoming it. The authors review physiological resistance based upon tumor architecture, cellular resistance based on drug transport, epigenetic changes that neutralize or bypass drug cytotoxicity, and genetic changes that alter drug target molecules by decreasing or eliminating drug binding and efficacy. Highlights include new insights into resistance to antiangiogenic therapies, oncogenes and tumor suppressor genes in therapeutic resistance, cancer stem cells, and the development of more effective therapies. There are also new findings on tumor immune escape mechanisms, gene amplification in drug resistance, the molecular determinants of multidrug resistance, and resistance to taxanes and Herceptin.
An integrated overview of cancer drug discovery and development from the bench to the clinic, showing with broad strokes and representative examples the drug development process as a network of linked components leading from the discovered target to the ultimate therapeutic product. Following a systems biology approach, the authors explain genomic databases and how to discover oncological targets from them, how then to advance from the gene and transcript to the level of protein biochemistry, how next to move from the chemical realm to that of the living cell and, ultimately, pursue animal modeling and clinical development. Emerging cancer therapeutics including Ritux an, Erbitux, Gleevec Herceptin, Avastin, ABX-EGF, Velcade, Kepivance, Iressa, Tarceva, and Zevalin are addressed. Highlights include cancer genomics, pharmacogenomics, transcriptomics, gene expression analysis, proteomic and enzymatic cancer profiling technologies, and cellular and animal approaches to cancer target validation.
This book presents the first comprehensive exploration of the dynamic potential of microtubules anti-cancer targets. Written by leading anti-cancer researchers, this groundbreaking volume collects the most current microtubule research available and investigates the potential of microtubules in cancer therapy.
Transforming Growth Factor- ß in Cancer Therapy, Vols. 1 and 2, provides a compendium of findings about the role of transforming growth factor- ß (TGF- ß) in cancer treatment and therapy. The second volume, Cancer Treatment in Therapy, is divided into three parts. The companion volume details the role of TGF- ß on basic and clinical biology.
This volume represents a compendium of scientific findings and approaches to the study of angiogenesis in cancer. The second edition of Antiangiogenic Agents in Cancer Therapy is intended to give a current perspective on the state-of-the-art of angiogenensis and therapy directed at this process. Antiangiogenesis is a dynamic and evolving field in oncology. New therapeutic targets continue to emerge followed by the rapid development of new therapeutic agents to be investigated in clinical trials. Optimizing the therapeutic potential of antiangiogenic agents in combination with the other therapies in the armamentarium to fight cancer will be an on-going challenge.
Leading researchers, from the Novartis group that pioneered Gleevec/GlivecTM and around the world, comprehensively survey the state of the art in the drug discovery processes (bio- and chemoinformatics, structural biology, profiling, generation of resistance, etc.) aimed at generating PTK inhibitors for the treatment of various diseases, including cancer. Highlights include a discussion of the rationale and the progress made towards generating "selective" low molecular-weight kinase inhibitors; an analysis of the normal function, role in disease, and application of platelet-derived growth factor antagonists; and a summary of the factors involved in successful structure-based drug design. Additional chapters address the advantages and disadvantages of in vivo preclinical models for testing protein kinase inhibitors with antitumor activity and the utility of different methods in the drug discovery and development process for determining "on-target" vs "off-target" effects of kinase inhibitors.
Transforming Growth Factor- ß in Cancer Therapy, Vols. 1 and 2, provides a compendium of findings about the role of transforming growth factor- ß (TGF- ß) in cancer treatment and therapy. The first volume, Basic and Clinical Biology, is divided into three parts. This volume’s companion, Cancer Treatment in Therapy, examines transforming growth factor- ß in other developing and advanced cancers and methods of treatment and therapy.