You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first book to examine extensively the religious aspects of Chinese alchemy. Its main focus is the relation of alchemy to the Daoist traditions of the early medieval period (third to sixth centuries). It shows how alchemy contributed to and was tightly integrated into the elaborate body of doctrines and practices that Daoists built at that time, from which Daoism as we know it today evolved. The book also clarifies the origins of Chinese alchemy and the respective roles of alchemy and meditation in self-cultivation practices. It contains full translations of three important medieval texts, all of them accompanied by running commentaries, making available for the first time in English the gist of the early Chinese alchemical corpus.
Science and art are increasingly interconnected in the activities of the study and conservation of works of art. Science plays a key role in cultural heritage, from developing new analytical techniques for studying the art, to investigating new ways of preserving the materials for the future. For example, high resolution multispectral examination of paintings allows art historians to view underdrawings barely visible before, while the use of non-invasive and micro-sampling analytical techniques allow scientists to identify pigments and binders that help art conservators in their work. It also allows curators to understand more about how the artwork was originally painted. Through a series of...
From the reviews: "...A class in nanoscale science and technology is daunting for the educator, who must organize a large collection of materials to cover the field, and for the student, who must absorb all the new concepts. This textbook is an excellent resource that allows students from any engineering background to quickly understand the foundations and exciting advances of the field. The example problems with answers and the long list of references in each chapter are a big plus for course tutors. The book is organized into seven sections. The first, nanoscale fabrication and characterization, covers nanolithography, self-assembly, and scanning probe microscopy. Of these, we enjoyed the ...
This volume is part of a continuing Electroanalytical Chemistry Series designed to provide authoritative reviews on recent developments and applications of well-established techniques in the field of electroanalytical chemistry. Electroanalytical techniques are used in such diverse areas as electro-organic synthesis, fuel cell studies, and radical ion formation. Each volume provides the necessary background and starting point for graduate students undertaking related research projects and is of special interest to practicing analytical chemists concerned with electroanalytical techniques. Each chapter provides comprehensive coverage of a subject area including detailed descriptions of techni...
In a classical approach materials science is mainly dealing with interatomic interactions within molecules, without paying much interest on weak intermolecular interactions. However, the variety of structures actually is the result of weak ordering because of noncovalent interactions. Indeed, for self-assembly to be possible in soft materials, it is evident that forces between molecules must be much weaker than covalent bonds between the atoms of a molecule. The weak intermolecular interactions responsible for molecular ordering in soft materials include hydrogen bonds, coordination bonds in ligands and complexes, ionic and dipolar interactions, van der Waals forces, and hydrophobic interactions. Recent evolutions in nanosciences and nanotechnologies provide strong arguments to support the opportunity and importance of the topics approached in this book, the fundamental and applicative aspects related to molecular interactions being of large interest in both research and innovative environments. We expect this book to have a strong impact at various education and research training levels, for young and experienced researchers from both academia and industry.
A physics book that covers the optical properties of quantum-confined semiconductor nanostructures from both the theoretical and experimental points of view together with technological applications. Topics to be reviewed include quantum confinement effects in semiconductors, optical adsorption and emission properties of group IV, III-V, II-VI semiconductors, deep-etched and self assembled quantum dots, nanoclusters, and laser applications in optoelectronics.
Quickly becoming the hottest topic of the new millennium (2.4 billion dollars funding in US alone) Current status and future trends of micro and nanoelectronics research Written by leading experts in the corresponding research areas Excellent tutorial for graduate students and reference for "gurus" Provides a broad overlook and fundamentals of nanoscience and nanotechnology from chemistry to electronic devices
The first step in developing nanoscience and nanotechnology is the production of nanoparticles. Controlled Synthesis of Nanoparticles in Microheterogeneous Systems contains descriptions of one of the most powerful bottom-up methods of synthesizing size controlled and stable nanoparticles. This method is based on the use of surfactant-containing microheterogeneous systems: liquid crystals, monolayers and multilayers, solutions of direct and reversed micelles, direct and reversed vesicles, and water-in-oil and oil-in-water microemulsions. The author is prominent in the field of physico-chemical characterization of microheterogeneous systems and their use as ideal solvent and reaction media for...
Reviews the most interesting materials on the market concerning self-ordering, including macroporous silicon, porous alumina, MCM41 and photonic bandgap.