You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Totally nonnegative matrices arise in a remarkable variety of mathematical applications. This book is a comprehensive and self-contained study of the essential theory of totally nonnegative matrices, defined by the nonnegativity of all subdeterminants. It explores methodological background, historical highlights of key ideas, and specialized topics. The book uses classical and ad hoc tools, but a unifying theme is the elementary bidiagonal factorization, which has emerged as the single most important tool for this particular class of matrices. Recent work has shown that bidiagonal factorizations may be viewed in a succinct combinatorial way, leading to many deep insights. Despite slow develo...
This book provides a wide variety of state-space--based numerical algorithms for the synthesis of feedback algorithms for linear systems with input saturation. Specifically, it addresses and solves the anti-windup problem, presenting the objectives and terminology of the problem, the mathematical tools behind anti-windup algorithms, and more than twenty algorithms for anti-windup synthesis, illustrated with examples. Luca Zaccarian and Andrew Teel's modern method--combining a state-space approach with algorithms generated by solving linear matrix inequalities--treats MIMO and SISO systems with equal ease. The book, aimed at control engineers as well as graduate students, ranges from very sim...
The Handbook of Linear Algebra provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use handbook format. The esteemed international contributors guide you from the very elementary aspects of the subject to the frontiers of current research. The book features an accessibl
With a substantial amount of new material, the Handbook of Linear Algebra, Second Edition provides comprehensive coverage of linear algebra concepts, applications, and computational software packages in an easy-to-use format. It guides you from the very elementary aspects of the subject to the frontiers of current research. Along with revisions and updates throughout, the second edition of this bestseller includes 20 new chapters. New to the Second Edition Separate chapters on Schur complements, additional types of canonical forms, tensors, matrix polynomials, matrix equations, special types of matrices, generalized inverses, matrices over finite fields, invariant subspaces, representations ...
Among all areas of mathematics, algebra is one of the best suited to find applications within the frame of our booming technological society. The thirty-eight articles in this volume encompass the proceedings of the International Conference on Algebra and Its Applications (Athens, OH, 1999), which explored the applications and interplay among the disciplines of ring theory, linear algebra, and coding theory. The presentations collected here reflect the dialogue between mathematicians involved in theoretical aspects of algebra and mathematicians involved in solving problems where state-of-the-art research tools may be used and applied. This Contemporary Mathematics series volume communicates the potential for collaboration among those interested in exploring the wealth of applications for abstract algebra in fields such as information and coding. The expository papers would serve well as supplemental reading in graduate seminars.
Accuracy and Stability of Numerical Algorithms gives a thorough, up-to-date treatment of the behavior of numerical algorithms in finite precision arithmetic. It combines algorithmic derivations, perturbation theory, and rounding error analysis, all enlivened by historical perspective and informative quotations. This second edition expands and updates the coverage of the first edition (1996) and includes numerous improvements to the original material. Two new chapters treat symmetric indefinite systems and skew-symmetric systems, and nonlinear systems and Newton's method. Twelve new sections include coverage of additional error bounds for Gaussian elimination, rank revealing LU factorizations, weighted and constrained least squares problems, and the fused multiply-add operation found on some modern computer architectures.
In their preface, the editors describe algebraic combinatorics as the area of combinatorics concerned with exact, as opposed to approximate, results and which puts emphasis on interaction with other areas of mathematics, such as algebra, topology, geometry, and physics. It is a vibrant area, which saw several major developments in recent years. The goal of the 2022 conference Open Problems in Algebraic Combinatorics 2022 was to provide a forum for exchanging promising new directions and ideas. The current volume includes contributions coming from the talks at the conference, as well as a few other contributions written specifically for this volume. The articles cover the majority of topics in algebraic combinatorics with the aim of presenting recent important research results and also important open problems and conjectures encountered in this research. The editors hope that this book will facilitate the exchange of ideas in algebraic combinatorics.
Intensive research in matrix completions, moments, and sums of Hermitian squares has yielded a multitude of results in recent decades. This book provides a comprehensive account of this quickly developing area of mathematics and applications and gives complete proofs of many recently solved problems. With MATLAB codes and more than 200 exercises, the book is ideal for a special topics course for graduate or advanced undergraduate students in mathematics or engineering, and will also be a valuable resource for researchers. Often driven by questions from signal processing, control theory, and quantum information, the subject of this book has inspired mathematicians from many subdisciplines, in...
None