You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A selection of Hiroshi Tanaka's brilliant works on stochastic processes and related topics.
Over the past eighty years, martingales have become central in the mathematics of randomness. They appear in the general theory of stochastic processes, in the algorithmic theory of randomness, and in some branches of mathematical statistics. Yet little has been written about the history of this evolution. This book explores some of the territory that the history of the concept of martingales has transformed. The historian of martingales faces an immense task. We can find traces of martingale thinking at the very beginning of probability theory, because this theory was related to gambling, and the evolution of a gambler’s holdings as a result of following a particular strategy can always b...
The book discusses the following topics in stochastic analysis: 1. Stochastic analysis related to Lie groups: stochastic analysis of loop spaces and infinite dimensional manifolds has been developed rapidly after the fundamental works of Gross and Malliavin. (Lectures by Driver, Gross, Mitoma, and Sengupta.)
This book is an English translation of Kiyosi Ito's monograph published in Japanese in 1957. It gives a unified and comprehensive account of additive processes (or Levy processes), stationary processes, and Markov processes, which constitute the three most important classes of stochastic processes. Written by one of the leading experts in the field, this volume presents to the reader lucid explanations of the fundamental concepts and basic results in each of these three major areasof the theory of stochastic processes. With the requirements limited to an introductory graduate course on analysis (especially measure theory) and basic probability theory, this book is an excellent text for any g...
Being a systematic treatment of the modern theory of stochastic integrals and stochastic differential equations, the theory is developed within the martingale framework, which was developed by J.L. Doob and which plays an indispensable role in the modern theory of stochastic analysis.A considerable number of corrections and improvements have been made for the second edition of this classic work. In particular, major and substantial changes are in Chapter III and Chapter V where the sections treating excursions of Brownian Motion and the Malliavin Calculus have been expanded and refined. Sections discussing complex (conformal) martingales and Kahler diffusions have been added.
Stochastic analysis, a branch of probability theory stemming from the theory of stochastic differential equations, is becoming increasingly important in connection with partial differential equations, non-linear functional analysis, control theory and statistical mechanics.