Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Gross-Zagier Formula on Shimura Curves
  • Language: en
  • Pages: 266

The Gross-Zagier Formula on Shimura Curves

This comprehensive account of the Gross-Zagier formula on Shimura curves over totally real fields relates the heights of Heegner points on abelian varieties to the derivatives of L-series. The formula will have new applications for the Birch and Swinnerton-Dyer conjecture and Diophantine equations. The book begins with a conceptual formulation of the Gross-Zagier formula in terms of incoherent quaternion algebras and incoherent automorphic representations with rational coefficients attached naturally to abelian varieties parametrized by Shimura curves. This is followed by a complete proof of its coherent analogue: the Waldspurger formula, which relates the periods of integrals and the special values of L-series by means of Weil representations. The Gross-Zagier formula is then reformulated in terms of incoherent Weil representations and Kudla's generating series. Using Arakelov theory and the modularity of Kudla's generating series, the proof of the Gross-Zagier formula is reduced to local formulas. The Gross-Zagier Formula on Shimura Curves will be of great use to students wishing to enter this area and to those already working in it.

Heegner Points and Rankin L-Series
  • Language: en
  • Pages: 386

Heegner Points and Rankin L-Series

Thirteen articles by leading contributors on the history of the Gross-Zagier formula and its developments.

Arithmetic and Geometry
  • Language: en
  • Pages: 186

Arithmetic and Geometry

Arithmetic and Geometry presents highlights of recent work in arithmetic algebraic geometry by some of the world's leading mathematicians. Together, these 2016 lectures—which were delivered in celebration of the tenth anniversary of the annual summer workshops in Alpbach, Austria—provide an introduction to high-level research on three topics: Shimura varieties, hyperelliptic continued fractions and generalized Jacobians, and Faltings height and L-functions. The book consists of notes, written by young researchers, on three sets of lectures or minicourses given at Alpbach. The first course, taught by Peter Scholze, contains his recent results dealing with the local Langlands conjecture. T...

My Mathematical Universe: People, Personalities, And The Profession
  • Language: en
  • Pages: 770

My Mathematical Universe: People, Personalities, And The Profession

This is an autobiography and an exposition on the contributions and personalities of many of the leading researchers in mathematics and physics with whom Dr Krishna Alladi, Professor of Mathematics at the University of Florida, has had personal interaction with for over six decades. Discussions of various aspects of the physics and mathematics academic professions are included.Part I begins with the author's unusual and frequent introductions as a young boy to scientific luminaries like Nobel Laureates Niels Bohr, Murray Gell-Mann, and Richard Feynman, in the company of his father, the scientist Alladi Ramakrishnan. Also in Part I is an exciting account of how the author started his research...

Six Short Chapters on Automorphic Forms and L-functions
  • Language: en
  • Pages: 131

Six Short Chapters on Automorphic Forms and L-functions

"Six Short Chapters on Automorphic Forms and L-functions" treats the period conjectures of Shimura and the moment conjecture. These conjectures are of central importance in contemporary number theory, but have hitherto remained little discussed in expository form. The book is divided into six short and relatively independent chapters, each with its own theme, and presents a motivated and lively account of the main topics, providing professionals an overall view of the conjectures and providing researchers intending to specialize in the area a guide to the relevant literature. Ze-Li Dou and Qiao Zhang are both associate professors of Mathematics at Texas Christian University, USA.

Art And Practice Of Mathematics, The: Interviews At The Institute For Mathematical Sciences, National University Of Singapore, 2010-2020
  • Language: en
  • Pages: 442

Art And Practice Of Mathematics, The: Interviews At The Institute For Mathematical Sciences, National University Of Singapore, 2010-2020

This book constitutes the second volume of interviews with prominent mathematicians and mathematical scientists who visited the Institute for Mathematical Sciences, National University of Singapore. First published in the Institute's newsletter Imprints during the period 2010-2020, they offer glimpses of an esoteric universe as viewed and experienced by some of the leading and creative practitioners of the craft of mathematics.The topics covered in this volume are wide-ranging, running from pure mathematics (logic, number theory, algebraic geometry) to applied mathematics (mathematical modeling, fluid dynamics) through probability and statistics, mathematical physics, theoretical computer sc...

Lecture Notes on Diophantine Analysis
  • Language: en
  • Pages: 248

Lecture Notes on Diophantine Analysis

  • Type: Book
  • -
  • Published: 2015-05-05
  • -
  • Publisher: Springer

These lecture notes originate from a course delivered at the Scuola Normale in Pisa in 2006. Generally speaking, the prerequisites do not go beyond basic mathematical material and are accessible to many undergraduates. The contents mainly concern diophantine problems on affine curves, in practice describing the integer solutions of equations in two variables. This case historically suggested some major ideas for more general problems. Starting with linear and quadratic equations, the important connections with Diophantine Approximation are presented and Thue's celebrated results are proved in full detail. In later chapters more modern issues on heights of algebraic points are dealt with, and applied to a sharp quantitative treatment of the unit equation. The book also contains several supplements, hinted exercises and an appendix on recent work on heights.

Congressional Record
  • Language: en
  • Pages: 1518

Congressional Record

  • Categories: Law
  • Type: Book
  • -
  • Published: 2011
  • -
  • Publisher: Unknown

The Congressional Record is the official record of the proceedings and debates of the United States Congress. It is published daily when Congress is in session. The Congressional Record began publication in 1873. Debates for sessions prior to 1873 are recorded in The Debates and Proceedings in the Congress of the United States (1789-1824), the Register of Debates in Congress (1824-1837), and the Congressional Globe (1833-1873)

Trends in Contemporary Mathematics
  • Language: en
  • Pages: 309

Trends in Contemporary Mathematics

  • Type: Book
  • -
  • Published: 2014-08-27
  • -
  • Publisher: Springer

The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.

The Fermat Diary
  • Language: en
  • Pages: 246

The Fermat Diary

This book concentrates on the final chapter of the story of perhaps the most famous mathematics problem of our time: Fermat's Last Theorem. The full story begins in 1637, with Pierre de Fermat's enigmatic marginal note in his copy of Diophantus's Arithmetica. It ends with the spectacular solution by Andrew Wiles some 350 years later. The Fermat Diary provides a record in pictures and words of the dramatic time from June 1993 to August 1995, including the period when Wiles completed the last stages of the proof and concluding with the mathematical world's celebration of Wiles' result at Boston University. This diary takes us through the process of discovery as reported by those who worked on ...