Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Crossed Products of $C^*$-Algebras
  • Language: en
  • Pages: 546

Crossed Products of $C^*$-Algebras

The theory of crossed products is extremely rich and intriguing. There are applications not only to operator algebras, but to subjects as varied as noncommutative geometry and mathematical physics. This book provides a detailed introduction to this vast subject suitable for graduate students and others whose research has contact with crossed product $C*$-algebras. in addition to providing the basic definitions and results, the main focus of this book is the fine ideal structure of crossed products as revealed by the study of induced representations via the Green-Mackey-Rieffel machine. in particular, there is an in-depth analysis of the imprimitivity theorems on which Rieffel's theory of ind...

Perspectives on Noncommutative Geometry
  • Language: en
  • Pages: 176

Perspectives on Noncommutative Geometry

This volume represents the proceedings of the Noncommutative Geometry Workshop that was held as part of the thematic program on operator algebras at the Fields Institute in May 2008. Pioneered by Alain Connes starting in the late 1970s, noncommutative geometry was originally inspired by global analysis, topology, operator algebras, and quantum physics. Its main applications were to settle some long-standing conjectures, such as the Novikov conjecture and the Baum-Connes conjecture. Next came the impact of spectral geometry and the way the spectrum of a geometric operator, like the Laplacian, holds information about the geometry and topology of a manifold, as in the celebrated Weyl law. This ...

On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates
  • Language: en
  • Pages: 102

On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates

This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.

Operator Algebra and Dynamics
  • Language: en
  • Pages: 343

Operator Algebra and Dynamics

Based on presentations given at the NordForsk Network Closing Conference “Operator Algebra and Dynamics,” held in Gjáargarður, Faroe Islands, in May 2012, this book features high quality research contributions and review articles by researchers associated with the NordForsk network and leading experts that explore the fundamental role of operator algebras and dynamical systems in mathematics with possible applications to physics, engineering and computer science. It covers the following topics: von Neumann algebras arising from discrete measured groupoids, purely infinite Cuntz-Krieger algebras, filtered K-theory over finite topological spaces, C*-algebras associated to shift spaces (o...

K-theory and Noncommutative Geometry
  • Language: en
  • Pages: 460

K-theory and Noncommutative Geometry

Since its inception 50 years ago, K-theory has been a tool for understanding a wide-ranging family of mathematical structures and their invariants: topological spaces, rings, algebraic varieties and operator algebras are the dominant examples. The invariants range from characteristic classes in cohomology, determinants of matrices, Chow groups of varieties, as well as traces and indices of elliptic operators. Thus K-theory is notable for its connections with other branches of mathematics. Noncommutative geometry develops tools which allow one to think of noncommutative algebras in the same footing as commutative ones: as algebras of functions on (noncommutative) spaces. The algebras in quest...

Basic Bundle Theory and K-Cohomology Invariants
  • Language: en
  • Pages: 344

Basic Bundle Theory and K-Cohomology Invariants

Based on several recent courses given to mathematical physics students, this volume is an introduction to bundle theory. It aims to provide newcomers to the field with solid foundations in topological K-theory. A fundamental theme, emphasized in the book, centers around the gluing of local bundle data related to bundles into a global object. One renewed motivation for studying this subject, comes from quantum field theory, where topological invariants play an important role.

Flat Level Set Regularity of $p$-Laplace Phase Transitions
  • Language: en
  • Pages: 158

Flat Level Set Regularity of $p$-Laplace Phase Transitions

We prove a Harnack inequality for level sets of $p$-Laplace phase transition minimizers. In particular, if a level set is included in a flat cylinder, then, in the interior, it is included in a flatter one. The extension of a result conjectured by De Giorgi and recently proven by the third author for $p=2$ follows.

Higher Initial Ideals of Homogeneous Ideals
  • Language: en
  • Pages: 82

Higher Initial Ideals of Homogeneous Ideals

Given a homogeneous ideal I and a monomial order, the initials ideal in (I) can be formed. The initial idea gives information about I, but quite a lot of information is also lost. The author remedies this by defining a series of higher initial ideals of a homogenous ideal, and considers the case when I is the homogenous ideal of a curve in P3 and the monomial order is reverse lexicographic. No index. Annotation copyrighted by Book News, Inc., Portland, OR

Probabilistic Models of Cosmic Backgrounds
  • Language: en
  • Pages: 288

Probabilistic Models of Cosmic Backgrounds

  • Type: Book
  • -
  • Published: 2024-06-30
  • -
  • Publisher: CRC Press

Combining research methods from various areas of mathematics and physics, Probabilistic Models of Cosmic Backgrounds describes the isotropic random sections of certain fiber bundles and their applications to creating rigorous mathematical models of both discovered and hypothetical cosmic backgrounds. Previously scattered and hard-to-find mathematical and physical theories have been assembled from numerous textbooks, monographs, and research papers, and explained from different or even unexpected points of view. This consists of both classical and newly discovered results necessary for understanding a sophisticated problem of modelling cosmic backgrounds. The book contains a comprehensive des...

Finite Sections of Band-Dominated Operators
  • Language: en
  • Pages: 104

Finite Sections of Band-Dominated Operators

The goal of this text is to review recent advances and to present new results in the numerical analysis of the finite sections method for general band and band-dominated operators. The main topics are the stability of the finite sections method and the asymptotic behavior of singular values. The latter topic is closely related with compactness and Fredholm properties of approximation sequences, and the paper can also serve as an introduction into this remarkable field of numerical analysis. Further the author discusses the behavior of approximation numbers, determinants, essential spectra and essential pseudospectra as well as the localization of pseudomodes of finite sections of band-dominated operators.