You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promis...
Comprising a selection of expository and research papers, Harmonic Analysis and Integral Geometry grew from presentations offered at the July 1998 Summer University of Safi, Morocco-an annual, advanced research school and congress. This lively and very successful event drew the attendance of many top researchers, who offered both individual lecture
The aim of the series is to present new and important developments in pure and applied mathematics. Well established in the community over two decades, it offers a large library of mathematics including several important classics. The volumes supply thorough and detailed expositions of the methods and ideas essential to the topics in question. In addition, they convey their relationships to other parts of mathematics. The series is addressed to advanced readers wishing to thoroughly study the topic. Editorial Board Lev Birbrair, Universidade Federal do Ceará, Fortaleza, Brasil Walter D. Neumann, Columbia University, New York, USA Markus J. Pflaum, University of Colorado, Boulder, USA Dierk ...
This book discusses character theory and its applications to finite groups. The work places the subject within the reach of people with a relatively modest mathematical background. The necessary background exceeds the standard algebra course with respect only to finite groups. Starting with basic notions and theorems in character theory, the authors present a variety of results on the properties of complex-valued characters and applications to finite groups. The main themes are degrees and kernels of irreducible characters, the class number and the number of nonlinear irreducible characters, values of irreducible characters, characterizations and generalizations of Frobenius groups, and generalizations and applications of monomial groups. The presentation is detailed, and many proofs of known results are new. Most of the results in the book are presented in monograph form for the first time. Numerous exercises offer additional information on the topics and help readers to understand the main concepts and results.
Since 2001 the Scuola Normale Superiore di Pisa has organized the "Colloquio De Giorgi", a series of colloquium talks named after Ennio De Giorgi. The Colloquio is addressed to a general mathematical audience, and especially meant to attract graduate students and advanced undergraduate students. The lectures are intended to be not too technical, in fields of wide interest. They must provide an overview of the general topic, possibly in a historical perspective, together with a description of more recent progress. The idea of collecting the materials from these lectures and publishing them in annual volumes came out recently, as a recognition of their intrinsic mathematical interest, and also with the aim of preserving memory of these events.
A unique series of fascinating research papers on subjects related to the work of Niels Henrik Abel, written by some of the foremost specialists in their fields. Some of the authors have been specifically invited to present papers, discussing the influence of Abel in a mathematical-historical context. Others have submitted papers presented at the Abel Bicentennial Conference, Oslo June 3-8, 2002. The idea behind the book has been to produce a text covering a substantial part of the legacy of Abel, as perceived at the beginning of the 21st century.
This book discusses a number of qualitative features of mathematical models of incompressible fluids. Three basic systems of hydrodynamical equations are considered: the system of stationary Euler equations for flows of an ideal (nonviscous) fluid, stationary Navier-Stokes equations for flows of a viscous fluid, and Reynolds equations for the mean velocity field, pressure, and pair one-point velocity correlations of turbulent flows. The analysis concerns algebraic or geometric properties of vector fields generated by these equations, such as the general arrangement of streamlines, the character and distribution of singular points, conditions for their absence or appearance, and so on. Troshkin carries out a systematic application of the analysis to investigate conditions for unique solvability of a number of problems for these quasilinear systems. Containing many examples of particular phenomena illustrating the general ideas covered, this book will be of interest to researchers and graduate students working in mathematical physics and hydrodynamics.
With recent technological advances in workstations, graphics, graphical user interfaces, and object oriented programming languages, a significant number of researchers are developing general-purpose software and integrated software systems for domains in discrete mathematics, including graph theory, combinatorics, combinatorial optimization, and sets. This software aims to provide effective computational tools for research, applications prototyping, and teaching. In March 1992, DIMACS sponsored a workshop on Computational Support for Discrete Mathematics in order to facilitate interactions between the researchers, developers, and educators who work in these areas. Containing refereed papers based on talks presented at the workshop, this volume documents current and past research in these areas and should provide impetus for new interactions.