Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

The Math Encyclopedia of Smarandache type Notions
  • Language: en
  • Pages: 136

The Math Encyclopedia of Smarandache type Notions

About the works of Florentin Smarandache have been written a lot of books (he himself wrote dozens of books and articles regarding math, physics, literature, philosophy). Being a globally recognized personality in both mathematics (there are countless functions and concepts that bear his name) and literature, it is natural that the volume of writings about his research is huge. What we try to do with this encyclopedia is to gather together as much as we can both from Smarandache’s mathematical work and the works of many mathematicians around the world inspired by the Smarandache notions. We structured this book using numbered Definitions, Theorems, Conjectures, Notes and Comments, in order...

THE PSEUDO-SMARANDACHE FUNCTION
  • Language: en
  • Pages: 10

THE PSEUDO-SMARANDACHE FUNCTION

The Pseudo-Smarandache Function is part of number theory. The function comes from the Smarandache Function.

SMARANDACHE SOFT GROUPOIDS
  • Language: en
  • Pages: 10

SMARANDACHE SOFT GROUPOIDS

In this paper, Smarandache soft groupoids shortly (SS-groupoids) are introduced as a generalization of Smarandache Soft semigroups (SS-semigroups) . A Smarandache Soft groupoid is an approximated collection of Smarandache subgroupoids of a groupoid. Further, we introduced parameterized Smarandache groupoid and strong soft semigroup over a groupoid Smarandache soft ideals are presented in this paper. We also discussed some of their core and fundamental properties and other notions with sufficient amount of examples. At the end, we introduced Smarandache soft groupoid homomorphism.

Smarandache Semigroups
  • Language: en
  • Pages: 95

Smarandache Semigroups

Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S.These types of structures occur in our everyday life, that?s why we study them in this book.Thus, as a particular case:A Smarandache Semigroup is a semigroup A which has a proper subset B in A that is a group (with respect to the same binary operation on A).

Smarandache Rings
  • Language: en
  • Pages: 222

Smarandache Rings

Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B which is embedded with a stronger structure S.By proper subset one understands a set included in A, different from the empty set, from the unit element if any, and from A.These types of structures occur in our every day?s life, that?s why we study them in this book.Thus, as two particular cases:A Smarandache ring of level I (S-ring I) is a ring R that contains a proper subset that is a field with respect to the operations induced. A Smarandache ring of level II (S-ring II) is a ring R that contains a proper subset A that verifies: ?A is an additive abelian group; ?A is a semigroup under multiplication;?For a, b I A, a?b = 0 if and only if a = 0 or b = 0.

SMARANDACHE NUMBERS REVISITED
  • Language: en
  • Pages: 135

SMARANDACHE NUMBERS REVISITED

More than seven years ago, my first book on some of the Smarandache notions was published. The book consisted of five chapters, and the topics covered were as follows : (1) some recursive type Smarandache sequences, (2) Smarandache determinant sequences, (3) the Smarandache function, (4) the pseudo Smarandache function, and (5) the Smarandache function related and the pseudo Smarandache function related triangles. Since then, new and diversified results have been published by different researchers. The aim of this book to update some of the contents of my previous book, and add some new results.

Smarandache Fuzzy Algebra
  • Language: en
  • Pages: 455

Smarandache Fuzzy Algebra

The author studies the Smarandache Fuzzy Algebra, which, like its predecessor Fuzzy Algebra, arose from the need to define structures that were more compatible with the real world where the grey areas mattered, not only black or white.In any human field, a Smarandache n-structure on a set S means a weak structure {w(0)} on S such that there exists a chain of proper subsets P(n-1) in P(n-2) in?in P(2) in P(1) in S whose corresponding structures verify the chain {w(n-1)} includes {w(n-2)} includes? includes {w(2)} includes {w(1)} includes {w(0)}, where 'includes' signifies 'strictly stronger' (i.e., structure satisfying more axioms).This book is referring to a Smarandache 2-algebraic structure...

Smarandache Notions Journal, Vol. 13
  • Language: en
  • Pages: 288

Smarandache Notions Journal, Vol. 13

The books are published by Smarandache Notions Journal. It is an electronic and hard-copy journal of research in mathematics. Besides this, occasionally It publishes papers of research in physics, philosophy, literary essays and creation, linguistics, and art work. Initially the journal was called "Smarandache Function Journal". Since 1996 to present the original journal was extended to the "Smarandache Notions Journal". It is annually published in the United States by the American Research Press in 1000 copies and on the internet.

Smarandache Function Journal, vol. 10/1999
  • Language: en
  • Pages: 213

Smarandache Function Journal, vol. 10/1999

A collection of papers concerning Smarandache type functions, numbers, sequences, inteqer algorithms, paradoxes, experimental geometries, algebraic structures, neutrosophic probability, set, and logic, etc.

Smarandache Non-Associative Rings
  • Language: en
  • Pages: 151

Smarandache Non-Associative Rings

Generally, in any human field, a Smarandache Structure on a set A means a weak structure W on A such that there exists a proper subset B in A which is embedded with a stronger structure S. These types of structures occur in our everyday's life, that's why we study them in this book. Thus, as a particular case: A Non-associative ring is a non-empty set R together with two binary operations '+' and '.' such that (R, +) is an additive abelian group and (R, .) is a groupoid. For all a, b, c in R we have (a + b) . c = a . c + b . c and c . (a + b) = c . a + c . b. A Smarandache non-associative ring is a non-associative ring (R, +, .) which has a proper subset P in R, that is an associative ring (with respect to the same binary operations on R).