You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A textbook on the fundamentals of VLSI design flow, covering the various stages of design implementation, verification, and testing.
ADVANCED ULTRA LOW-POWER SEMICONDUCTOR DEVICES Written and edited by a team of experts in the field, this important new volume broadly covers the design and applications of metal oxide semiconductor field effect transistors. This outstanding new volume offers a comprehensive overview of cutting-edge semiconductor components tailored for ultra-low power applications. These components, pivotal to the foundation of electronic devices, play a central role in shaping the landscape of electronics. With a focus on emerging low-power electronic devices and their application across domains like wireless communication, biosensing, and circuits, this book presents an invaluable resource for understandi...
Machine learning is a potential solution to resolve bottleneck issues in VLSI via optimizing tasks in the design process. This book aims to provide the latest machine-learning–based methods, algorithms, architectures, and frameworks designed for VLSI design. The focus is on digital, analog, and mixed-signal design techniques, device modeling, physical design, hardware implementation, testability, reconfigurable design, synthesis and verification, and related areas. Chapters include case studies as well as novel research ideas in the given field. Overall, the book provides practical implementations of VLSI design, IC design, and hardware realization using machine learning techniques. Featur...
This book serves as a hands-on guide to timing constraints in integrated circuit design. Readers will learn to maximize performance of their IC designs, by specifying timing requirements correctly. Coverage includes key aspects of the design flow impacted by timing constraints, including synthesis, static timing analysis and placement and routing. Concepts needed for specifying timing requirements are explained in detail and then applied to specific stages in the design flow, all within the context of Synopsys Design Constraints (SDC), the industry-leading format for specifying constraints.
The book focuses on the integration of intelligent communication systems, control systems, and devices related to all aspects of engineering and sciences. It contains high-quality research papers presented at the 2nd international conference, ICICCD 2017, organized by the Department of Electronics, Instrumentation and Control Engineering of University of Petroleum and Energy Studies, Dehradun on 15 and 16 April, 2017. The volume broadly covers recent advances of intelligent communication, intelligent control and intelligent devices. The work presented in this book is original research work, findings and practical development experiences of researchers, academicians, scientists and industrial practitioners.
During the last decade, there has been a great deal of interest in TFETs. To the best authors’ knowledge, no book on TFETs currently exists. The proposed book provides readers with fundamental understanding of the TFETs. It explains the interesting characteristics of the TFETs, pointing to their strengths and weaknesses, and describes the novel techniques that can be employed to overcome these weaknesses and improve their characteristics. Different tradeoffs that can be made in designing TFETs have also been highlighted. Further, the book provides simulation example files of TFETs that could be run using a commercial device simulator.
With its in-depth exploration of the close connection between microelectronics, AI, and VLSI technology, this book offers valuable insights into the cutting-edge techniques and tools used in VLSI design automation, making it an essential resource for anyone seeking to stay ahead in the rapidly evolving field of VLSI design. Very large-scale integration (VLSI) is the inter-disciplinary science of utilizing advanced semiconductor technology to create various functions of computer system. This book addresses the close link of microelectronics and artificial intelligence (AI). By combining VLSI technology, a very powerful computer architecture confinement is possible. To overcome problems at dif...
None
This book describes the physical operation of the Tunnel Field-effect Transistor (TFET) and circuits built with this device. Whereas the majority of publications on TFETs describe in detail the device, its characteristics, variants and performance, this will be the first book addressing TFET integrated circuits (TFET ICs). The authors describe the peculiarities of TFET ICs and their differences with MOSFETs. They also develop and analyze a number of logic circuits and memories. The discussion also includes complex circuits combining CMOS and TFET, as well as a potential fabrication process in Silicon.