Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Parabolic Geometries I
  • Language: en
  • Pages: 642

Parabolic Geometries I

Parabolic geometries encompass a very diverse class of geometric structures, including such important examples as conformal, projective, and almost quaternionic structures, hypersurface type CR-structures and various types of generic distributions. The characteristic feature of parabolic geometries is an equivalent description by a Cartan geometry modeled on a generalized flag manifold (the quotient of a semisimple Lie group by a parabolic subgroup). Background on differential geometry, with a view towards Cartan connections, and on semisimple Lie algebras and their representations, which play a crucial role in the theory, is collected in two introductory chapters. The main part discusses th...

Multidisciplinary Approaches to Visual Representations and Interpretations
  • Language: en
  • Pages: 451

Multidisciplinary Approaches to Visual Representations and Interpretations

  • Type: Book
  • -
  • Published: 2004-12-09
  • -
  • Publisher: Elsevier

The value of multi-disciplinary research lies in the exchange of ideas and methods across the traditional boundaries between areas of study. It could be argued that many of the advances in science and engineering take place because the ideas, methods and the tools of thought from one discipline become re-applied in another.The topic of "the visual" has become increasingly important as advances in technology have led to multi-media and multi-modal representations, and extended the range and scope of visual representation and interpretation in our lives. Under this broad heading there are many different perspectives and approaches, from across the entire spectrum of human knolwedge and activit...

The Ricci Flow: Techniques and Applications
  • Language: en
  • Pages: 542

The Ricci Flow: Techniques and Applications

The Ricci flow uses methods from analysis to study the geometry and topology of manifolds. With the third part of their volume on techniques and applications of the theory, the authors give a presentation of Hamilton's Ricci flow for graduate students and mathematicians interested in working in the subject, with an emphasis on the geometric and analytic aspects. The topics include Perelman's entropy functional, point picking methods, aspects of Perelman's theory of $\kappa$-solutions including the $\kappa$-gap theorem, compactness theorem and derivative estimates, Perelman's pseudolocality theorem, and aspects of the heat equation with respect to static and evolving metrics related to Ricci ...

Combinatorial Geometry and Its Algorithmic Applications
  • Language: en
  • Pages: 251

Combinatorial Geometry and Its Algorithmic Applications

"Based on a lecture series given by the authors at a satellite meeting of the 2006 International Congress of Mathematicians and on many articles written by them and their collaborators, this volume provides a comprehensive up-to-date survey of several core areas of combinatorial geometry. It describes the beginnings of the subject, going back to the nineteenth century (if not to Euclid), and explains why counting incidences and estimating the combinatorial complexity of various arrangements of geometric objects became the theoretical backbone of computational geometry in the 1980s and 1990s. The combinatorial techniques outlined in this book have found applications in many areas of computer ...

Connective Real $K$-Theory of Finite Groups
  • Language: en
  • Pages: 328

Connective Real $K$-Theory of Finite Groups

Focusing on the study of real connective $K$-theory including $ko^*(BG)$ as a ring and $ko_*(BG)$ as a module over it, the authors define equivariant versions of connective $KO$-theory and connective $K$-theory with reality, in the sense of Atiyah, which give well-behaved, Noetherian, uncompleted versions of the theory.

Algebraic Design Theory
  • Language: en
  • Pages: 314

Algebraic Design Theory

Combinatorial design theory is a source of simply stated, concrete, yet difficult discrete problems, with the Hadamard conjecture being a prime example. It has become clear that many of these problems are essentially algebraic in nature. This book provides a unified vision of the algebraic themes which have developed so far in design theory. These include the applications in design theory of matrix algebra, the automorphism group and its regular subgroups, the composition of smaller designs to make larger designs, and the connection between designs with regular group actions and solutions to group ring equations. Everything is explained at an elementary level in terms of orthogonality sets a...

Descriptive Set Theory
  • Language: en
  • Pages: 518

Descriptive Set Theory

Descriptive Set Theory is the study of sets in separable, complete metric spaces that can be defined (or constructed), and so can be expected to have special properties not enjoyed by arbitrary pointsets. This subject was started by the French analysts at the turn of the 20th century, most prominently Lebesgue, and, initially, was concerned primarily with establishing regularity properties of Borel and Lebesgue measurable functions, and analytic, coanalytic, and projective sets. Its rapid development came to a halt in the late 1930s, primarily because it bumped against problems which were independent of classical axiomatic set theory. The field became very active again in the 1960s, with the...

Functional Inequalities: New Perspectives and New Applications
  • Language: en
  • Pages: 331

Functional Inequalities: New Perspectives and New Applications

"The book describes how functional inequalities are often manifestations of natural mathematical structures and physical phenomena, and how a few general principles validate large classes of analytic/geometric inequalities, old and new. This point of view leads to "systematic" approaches for proving the most basic inequalities, but also for improving them, and for devising new ones--sometimes at will and often on demand. These general principles also offer novel ways for estimating best constants and for deciding whether these are attained in appropriate function spaces. As such, improvements of Hardy and Hardy-Rellich type inequalities involving radially symmetric weights are variational ma...

Quadrature Theory
  • Language: en
  • Pages: 376

Quadrature Theory

Every book on numerical analysis covers methods for the approximate calculation of definite integrals. The authors of this book provide a complementary treatment of the topic by presenting a coherent theory of quadrature methods that encompasses many deep and elegant results as well as a large number of interesting (solved and open) problems. The inclusion of the word ``theory'' in the title highlights the authors' emphasis on analytical questions, such as the existence and structure of quadrature methods and selection criteria based on strict error bounds for quadrature rules. Systematic analyses of this kind rely on certain properties of the integrand, called ``co-observations,'' which for...

Eigenvalue Distribution of Large Random Matrices
  • Language: en
  • Pages: 650

Eigenvalue Distribution of Large Random Matrices

Random matrix theory is a wide and growing field with a variety of concepts, results, and techniques and a vast range of applications in mathematics and the related sciences. The book, written by well-known experts, offers beginners a fairly balanced collection of basic facts and methods (Part 1 on classical ensembles) and presents experts with an exposition of recent advances in the subject (Parts 2 and 3 on invariant ensembles and ensembles with independent entries). The text includes many of the authors' results and methods on several main aspects of the theory, thus allowing them to present a unique and personal perspective on the subject and to cover many topics using a unified approach...