You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The latest edition of this highly acclaimed title introduces the reader to a wide range of spectroscopies, and includes both the background theory and applications to structure determination and chemical analysis. It covers rotational, vibrational, electronic, photoelectron and Auger spectroscopy, as well as EXAFs and the theory of lasers and laser spectroscopy. A revised and updated edition of a successful, clearly written book Includes the latest developments in modern laser techniques, such as cavity ring-down spectroscopy and femtosecond lasers Provides numerous worked examples, calculations and questions at the end of chapters
Infrared and Raman Spectroscopy, Principles and Spectral Interpretation, Second Edition provides a solid introduction to vibrational spectroscopy with an emphasis on developing critical interpretation skills. This book fully integrates the use of both IR and Raman spectroscopy as spectral interpretation tools, enabling the user to utilize the strength of both techniques while also recognizing their weaknesses. This second edition more than doubles the amount of interpreted IR and Raman spectra standards and spectral unknowns. The chapter on characteristic group frequencies is expanded to include increased discussions of sulphur and phosphorus organics, aromatic and heteroaromatics as well as...
This is the first non-technical book on spectroscopy written specifically for practical amateur astronomers. It includes all the science necessary for a qualitative understanding of stellar spectra, but avoids a mathematical treatment which would alienate many of its intended readers. Any amateur astronomer who carries out observational spectroscopy and who wants a non-technical account of the physical processes which determine the intensity and profile morphology of lines in stellar spectra will find this is the only book written specially for them. It is an ideal companion to existing books on observational amateur astronomical spectroscopy.
Now in its third edition, this classic text covers many aspects of infrared and Raman spectroscopy that are critical to the chemist doing structural or compositional analysis. This work includes practical and theoretical approaches to spectral interpretation as well as a discussion of experimental techniques. Emphasis is given to group frequencies, which are studied in detailed discussions, extensive tables, and over 600 carefully chosen and interpreted spectral examples. Also featured is a unique treatment of group frequencies that stresses their mechanical origin. This qualitative approach to vibrational analysis helps to simplify spectral interpretation.Additional topics include basic ins...
UV-VIS spectroscopy is one of the oldest methods in molecular spectroscopy. The definitive formulation of the Bouguer-Lambert Beer law in 1852 created the basis for the quantitative evaluation of absorption measurements at an early date. This led firstly to colorimetry, then to photometry and finally to spectrophotometry. This evolution ran parallel with the development of detectors for measuring light intensities, i.e. from the human eye via the photo element and photocell, to the photomultiplier and from the photo graphic plate to the present silicon-diode detector both of which allow simultaneous measurement of the complete spectrum. With the development of quantum chemistry, increasing a...
This text is aimed at people who have some familiarity with high-resolution NMR and who wish to deepen their understanding of how NMR experiments actually ‘work’. This revised and updated edition takes the same approach as the highly-acclaimed first edition. The text concentrates on the description of commonly-used experiments and explains in detail the theory behind how such experiments work. The quantum mechanical tools needed to analyse pulse sequences are introduced set by step, but the approach is relatively informal with the emphasis on obtaining a good understanding of how the experiments actually work. The use of two-colour printing and a new larger format improves the readabilit...
This book provides practical information on the use of infrared (IR) spectroscopy for the analysis of materials found in cultural objects. Designed for scientists and students in the fields of archaeology, art conservation, microscopy, forensics, chemistry, and optics, the book discusses techniques for examining the microscopic amounts of complex, aged components in objects such as paintings, sculptures, and archaeological fragments. Chapters include the history of infrared spectroscopy, the basic parameters of infrared absorption theory, IR instrumentation, analysis methods, sample collection and preparation, and spectra interpretation. The authors cite several case studies, such as examinations of Chumash Indian paints and the Dead Sea Scrolls. The Institute’s Tools for Conservation series provides practical scientific procedures and methodologies for the practice of conservation. The series is specifically directed to conservation scientists, conservators, and technical experts in related fields.
The book includes various spectroscopic techniques including atomic spectroscopy, pure rotational spectroscopy, vibrational spectroscopy of diatomic and polyatomic molecules, Raman spectroscopy and electronic spectroscopy. Solved and unsolved exercises are provided throughout the book for easy understanding and better assessment.
This book provides knowledge of the basic theory, spectral analysis methods, chemometrics, instrumentation, and applications of near-infrared (NIR) spectroscopy—not as a handbook but rather as a sourcebook of NIR spectroscopy. Thus, some emphasis is placed on the description of basic knowledge that is important in learning and using NIR spectroscopy. The book also deals with applications for a variety of research fields that are very useful for a wide range of readers from graduate students to scientists and engineers in both academia and industry. For readers who are novices in NIR spectroscopy, this book provides a good introduction, and for those who already are familiar with the field it affords an excellent means of strengthening their knowledge about NIR spectroscopy and keeping abreast of recent developments.
Spectroscopy is an indispensable tool in understanding physical and chemical structure, and today verysophisticated spectroscopic instruments are available with modern data processing techniques. This bookcovers the elementary and basic aspects of atomic spectroscopy like Bohr’s theory and atomic physics up to thelatest developments including laser cooling, Bose–Einstein condensates and atom lasers. Spectroscopy playsa major role in every field of science and this book would be valuable for physicists, chemists and biologists.