You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Extrasynaptic transmission is a unifying term for a wide variety of cellular processes, in which outside of synaptic terminals transmitter substances activate extrasynaptic receptors. Whereas “synaptic transmission” immediately refers to a process occurring at nerve terminals in which the arrival of a presynaptic impulse evokes exocytosis followed by a postsynaptic response within a millisecond time scale, extrasynaptic transmission has a wide diversity of ultrastructural and therefore mechanistic associated phenomena. In comparison to synaptic, extrasynaptic exocytosis may last for seconds or even minutes, thus expanding the timing of neuronal signaling. Extrasynaptic transmission has n...
The book is structured in five sections, each containing several chapters written by experts and major contributors to particular topics. The volume starts with a historical perspective and fundamental principles of membrane potential imaging and continues to cover the measurement of membrane potential signals from dendrites and axons of individual neurons, measurements of the activity of many neurons with single cell resolution, monitoring of population signals from the nervous system, and concludes with the overview of new approaches to voltage-imaging. The book is targeted at all scientists interested in this mature but also rapidly expanding imaging approach.
Synapses represent a unique neuronal compartment specialized in communication. The morpho-functional investigation of the synapse has always been hindered by its tiny size and high density of molecular elements, but specific technological and methodological advances helped us to reduce these limitations. As the matter of fact, in recent years, we have witnessed the continuous development of new methods allowing measuring and controlling synaptic activation both in vitro and in vivo. These include new genetically encoded sensors of synaptic exo-endocytosis, but also engineered synaptic proteins able to inhibit the release of neurotransmitters. Furthermore, new promising tools allow changing t...
This volume discusses membrane potential imaging in the nervous system and in the heart and modern optical recording technology. Additionally, it covers organic and genetically-encoded voltage-sensitive dyes; membrane potential imaging from individual neurons, brain slices, and brains in vivo; optical imaging of cardiac tissue and arrhythmias; bio-photonics modelling. This is an expanded and fully-updated second edition, reflecting all the recent advances in this field. Twenty chapters, all authored by leading names in the field, are cohesively structured into four sections. The opening section focuses on the history and principles of membrane potential imaging and lends context to the follo...
It is in general well appreciated that the cortical interneurons play various important roles in cortical neuronal networks both in normal and pathological states. Based on connectivity pattern, developmental, morphological and electrophysiological properties, distinct subgroups of GABAergic interneurons can be differentiated in the neocortex as well as in the hippocampal formation. In this E-Book, we are focusing our attention on inhibitory interneurons expressing calcium-binding protein calretinin (CR). The aim of the E-Book is to consolidate the knowledge about this interneuronal population and to inspire further research on the function and malfunction of these neurons, which – functionally – seem to stand "at the top of the pyramid" of cortical interneuronal types.
Activity of the multi-functional networked neurons depends on their intrinsic states and bears both cell- and network-defined features. Firing patterns of a neuron are conventionally attributed to spatial-temporal organization of inputs received from the network-mates via synapses, in vast majority dendritic. This attribution reflects widespread views of the within-cell job sharing, such that the main function of the dendrites is to receive signals and deliver them to the axo-somatic trigger zone, which actually generates the output pattern. However, these views are now revisited due to finding of active, non-linear properties of the dendritic membrane practically in neurons of practically a...
Pluripotent stem cells have distinct characteristics: self-renewal and the potential to differentiate into various somatic cells. In recent years, substantial advances have been made from basic science to clinical applications. The vast amount knowledge available makes obtaining concise yet sufficient information difficult, hence the purpose of this book. In this book, embryonic stem cells, induced pluripotent stem cells, and mesenchymal stem cells are discussed. The book is divided into five sections: pluripotency, culture methods, toxicology, disease models, and regenerative medicine. The topics covered range from new concepts to current technologies. Readers are expected to gain useful information from expert contributors.
Jeśli zdarza wam się zjeść ciasto, chociaż bardzo usilnie myśleliście o tym, że nie powinniście tego robić, mam dla was dobrą wiadomość – to nie kwestia waszej słabej woli, po prostu wasz „stary” mózg po raz kolejny wygrał walkę z nowym. Tak, macie w głowie więcej niż jeden mózg. Być może macie ich nawet tysiące. Jak to możliwe. Rewolucyjna teoria inteligencji tysiąca mózgów, która zachwyciła Billa Gatesa i Richarda Dawkinsa, tłumaczy, że ludzki mózg początkowo skupiał się wyłącznie na rywalizacji i prymitywnym przetrwaniu. Dopiero potem nauczył się wykorzystywać układy odniesienia i przyswoił model świata, dzięki czemu jako gatunek zaczęliśmy współodczuwać, tworzyć, a przede wszystkim myśleć. Czy to wystarczy, aby zapewnić nam świetlaną przyszłość? Nie. Nasz „stary” mózg wciąż nas sabotuje, podsycając nasze obawy i kontrolując popędy. Żeby pokonać nasze ograniczenia i w pełni odblokować nasz potencjał, musimy mu się przeciwstawić. Jeff Hawkins na szczęście wie, jak wygrać tę walkę.