You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
“There are words that are so familiar they obscure rather than illuminate the thing they mean, and ‘learning’ is such a word. It seems so ordinary, everyone does it. Actually it’s more of a black box, which Dehaene cracks open to reveal the awesome secrets within.”--The New York Times Book Review An illuminating dive into the latest science on our brain's remarkable learning abilities and the potential of the machines we program to imitate them The human brain is an extraordinary learning machine. Its ability to reprogram itself is unparalleled, and it remains the best source of inspiration for recent developments in artificial intelligence. But how do we learn? What innate biological foundations underlie our ability to acquire new information, and what principles modulate their efficiency? In How We Learn, Stanislas Dehaene finds the boundary of computer science, neurobiology, and cognitive psychology to explain how learning really works and how to make the best use of the brain’s learning algorithms in our schools and universities, as well as in everyday life and at any age.
A renowned cognitive neuroscientist?s fascinating and highly informative account of how the brain acquires reading How can a few black marks on a white page evoke an entire universe of sounds and meanings? In this riveting investigation, Stanislas Dehaene provides an accessible account of the brain circuitry of reading and explores what he calls the ?reading paradox?: Our cortex is the product of millions of years of evolution in a world without writing, so how did it adapt to recognize words? Reading in the Brain describes pioneering research on how we process language, revealing the hidden logic of spelling and the existence of powerful unconscious mechanisms for decoding words of any size...
WINNER OF THE 2014 BRAIN PRIZE From the acclaimed author of Reading in the Brain and How We Learn, a breathtaking look at the new science that can track consciousness deep in the brain How does our brain generate a conscious thought? And why does so much of our knowledge remain unconscious? Thanks to clever psychological and brain-imaging experiments, scientists are closer to cracking this mystery than ever before. In this lively book, Stanislas Dehaene describes the pioneering work his lab and the labs of other cognitive neuroscientists worldwide have accomplished in defining, testing, and explaining the brain events behind a conscious state. We can now pin down the neurons that fire when a...
The study of mathematical cognition and the ways in which the ideas of space, time and number are encoded in brain circuitry has become a fundamental issue for neuroscience. How such encoding differs across cultures and educational level is of further interest in education and neuropsychology. This rapidly expanding field of research is overdue for an interdisciplinary volume such as this, which deals with the neurological and psychological foundations of human numeric capacity. A uniquely integrative work, this volume provides a much needed compilation of primary source material to researchers from basic neuroscience, psychology, developmental science, neuroimaging, neuropsychology and theoretical biology. The first comprehensive and authoritative volume dealing with neurological and psychological foundations of mathematical cognition Uniquely integrative volume at the frontier of a rapidly expanding interdisciplinary field Features outstanding and truly international scholarship, with chapters written by leading experts in a variety of fields
Understanding how the brain learns helps teachers do their jobs more effectively. Primary researchers share the latest findings on the learning process and address their implications for educational theory and practice. Explore applications, examples, and suggestions for further thought and research; numerous charts and diagrams; strategies for all subject areas; and new ways of thinking about intelligence, academic ability, and learning disability.
Empirical and theoretical foundations of a cognitive neuroscience of consciousness.
A fascinating exploration of the human brain that combines “the leading edge of consciousness science with surprisingly personal and philosophical reflection . . . shedding light on how scientists really think”—this is “science writing at its best” (Times Higher Education). In which a scientist searches for an empirical explanation for phenomenal experience, spurred by his instinctual belief that life is meaningful. What links conscious experience of pain, joy, color, and smell to bioelectrical activity in the brain? How can anything physical give rise to nonphysical, subjective, conscious states? Christof Koch has devoted much of his career to bridging the seemingly unbridgeable g...
Our understanding of how the human brain performs mathematical calculations is far from complete, but in recent years there have been many exciting breakthroughs by scientists all over the world. Now, in The Number Sense, Stanislas Dehaene offers a fascinating look at this recent research, in an enlightening exploration of the mathematical mind. Dehaene begins with the eye-opening discovery that animals--including rats, pigeons, raccoons, and chimpanzees--can perform simple mathematical calculations, and that human infants also have a rudimentary number sense. Dehaene suggests that this rudimentary number sense is as basic to the way the brain understands the world as our perception of color...
Experts review the latest research on the neocortex and consider potential directions for future research. Over the past decade, technological advances have dramatically increased information on the structural and functional organization of the brain, especially the cerebral cortex. This explosion of data has radically expanded our ability to characterize neural circuits and intervene at increasingly higher resolutions, but it is unclear how this has informed our understanding of underlying mechanisms and processes. In search of a conceptual framework to guide future research, leading researchers address in this volume the evolution and ontogenetic development of cortical structures, the cor...
A Map to the Magic of Reading Stop for a moment and wonder: what's happening in your brain right now—as you read this paragraph? How much do you know about the innumerable and amazing connections that your mind is making as you, in a flash, make sense of this request? Why does it matter? The Reading Mind is a brilliant, beautifully crafted, and accessible exploration of arguably life's most important skill: reading. Daniel T. Willingham, the bestselling author of Why Don't Students Like School?, offers a perspective that is rooted in contemporary cognitive research. He deftly describes the incredibly complex and nearly instantaneous series of events that occur from the moment a child sees ...