You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a collection of three introductory tutorials coming out of three courses given at the CIMPA Research School “Galois Theory of Difference Equations” in Santa Marta, Columbia, July 23–August 1, 2012. The aim of these tutorials is to introduce the reader to three Galois theories of linear difference equations and their interrelations. Each of the three articles addresses a different galoisian aspect of linear difference equations. The authors motivate and give elementary examples of the basic ideas and techniques, providing the reader with an entry to current research. In addition each article contains an extensive bibliography that includes recent papers; the authors have provided pointers to these articles allowing the interested reader to explore further.
This book presents the foundations of the theory of groups and semigroups acting isometrically on Gromov hyperbolic metric spaces. Particular emphasis is paid to the geometry of their limit sets and on behavior not found in the proper setting. The authors provide a number of examples of groups which exhibit a wide range of phenomena not to be found in the finite-dimensional theory. The book contains both introductory material to help beginners as well as new research results, and closes with a list of attractive unsolved problems.
Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a “renormalization” of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory. This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of -categories and the basics of derived algebraic geom...
This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equ...
This book concentrates on first boundary-value problems for fully nonlinear second-order uniformly elliptic and parabolic equations with discontinuous coefficients. We look for solutions in Sobolev classes, local or global, or for viscosity solutions. Most of the auxiliary results, such as Aleksandrov's elliptic and parabolic estimates, the Krylov–Safonov and the Evans–Krylov theorems, are taken from old sources, and the main results were obtained in the last few years. Presentation of these results is based on a generalization of the Fefferman–Stein theorem, on Fang-Hua Lin's like estimates, and on the so-called “ersatz” existence theorems, saying that one can slightly modify “any” equation and get a “cut-off” equation that has solutions with bounded derivatives. These theorems allow us to prove the solvability in Sobolev classes for equations that are quite far from the ones which are convex or concave with respect to the Hessians of the unknown functions. In studying viscosity solutions, these theorems also allow us to deal with classical approximating solutions, thus avoiding sometimes heavy constructions from the usual theory of viscosity solutions.
Nilsystems play a key role in the structure theory of measure preserving systems, arising as the natural objects that describe the behavior of multiple ergodic averages. This book is a comprehensive treatment of their role in ergodic theory, covering development of the abstract theory leading to the structural statements, applications of these results, and connections to other fields. Starting with a summary of the relevant dynamical background, the book methodically develops the theory of cubic structures that give rise to nilpotent groups and reviews results on nilsystems and their properties that are scattered throughout the literature. These basic ingredients lay the groundwork for the e...
Classification of Finite Simple Groups (CFSG) is a major project involving work by hundreds of researchers. The work was largely completed by about 1983, although final publication of the “quasithin” part was delayed until 2004. Since the 1980s, CFSG has had a huge influence on work in finite group theory and in many adjacent fields of mathematics. This book attempts to survey and sample a number of such topics from the very large and increasingly active research area of applications of CFSG. The book is based on the author's lectures at the September 2015 Venice Summer School on Finite Groups. With about 50 exercises from original lectures, it can serve as a second-year graduate course for students who have had first-year graduate algebra. It may be of particular interest to students looking for a dissertation topic around group theory. It can also be useful as an introduction and basic reference; in addition, it indicates fuller citations to the appropriate literature for readers who wish to go on to more detailed sources.
The aim of this book is to introduce and develop an arithmetic analogue of classical differential geometry. In this new geometry the ring of integers plays the role of a ring of functions on an infinite dimensional manifold. The role of coordinate functions on this manifold is played by the prime numbers. The role of partial derivatives of functions with respect to the coordinates is played by the Fermat quotients of integers with respect to the primes. The role of metrics is played by symmetric matrices with integer coefficients. The role of connections (respectively curvature) attached to metrics is played by certain adelic (respectively global) objects attached to the corresponding matrices. One of the main conclusions of the theory is that the spectrum of the integers is “intrinsically curved”; the study of this curvature is then the main task of the theory. The book follows, and builds upon, a series of recent research papers. A significant part of the material has never been published before.
This book provides a thorough exposition of the main concepts and results related to various types of convergence of measures arising in measure theory, probability theory, functional analysis, partial differential equations, mathematical physics, and other theoretical and applied fields. Particular attention is given to weak convergence of measures. The principal material is oriented toward a broad circle of readers dealing with convergence in distribution of random variables and weak convergence of measures. The book contains the necessary background from measure theory and functional analysis. Large complementary sections aimed at researchers present the most important recent achievements. More than 100 exercises (ranging from easy introductory exercises to rather difficult problems for experienced readers) are given with hints, solutions, or references. Historic and bibliographic comments are included. The target readership includes mathematicians and physicists whose research is related to probability theory, mathematical statistics, functional analysis, and mathematical physics.
The Dynamical Mordell-Lang Conjecture is an analogue of the classical Mordell-Lang conjecture in the context of arithmetic dynamics. It predicts the behavior of the orbit of a point x under the action of an endomorphism f of a quasiprojective complex variety X. More precisely, it claims that for any point x in X and any subvariety V of X, the set of indices n such that the n-th iterate of x under f lies in V is a finite union of arithmetic progressions. In this book the authors present all known results about the Dynamical Mordell-Lang Conjecture, focusing mainly on a p-adic approach which provides a parametrization of the orbit of a point under an endomorphism of a variety.