You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Intensive research on fullerenes, nanoparticles, and quantum dots in the 1990s led to interest in nanotubes and nanowires in subsequent years. Handbook of Nanophysics: Nanotubes and Nanowires focuses on the fundamental physics and latest applications of these important nanoscale materials and structures. Each peer-reviewed chapter contains a broad-
Semiconductor nanostructures are ideal systems to tailor the physical properties via quantum effects, utilizing special growth techniques, self-assembling, wet chemical processes or lithographic tools in combination with tuneable external electric and magnetic fields. Such systems are called "Quantum Materials".The electronic, photonic, and phononic properties of these systems are governed by size quantization and discrete energy levels. The charging is controlled by the Coulomb blockade. The spin can be manipulated by the geometrical structure, external gates and by integrating hybrid ferromagnetic emitters.This book reviews sophisticated preparation methods for quantum materials based on III-V and II-VI semiconductors and a wide variety of experimental techniques for the investigation of these interesting systems. It highlights selected experiments and theoretical concepts and gives such a state-of-the-art overview about the wide field of physics and chemistry that can be studied in these systems.
The phenomenon of localization of the electronic wave function in a random medium can be regarded as the key manifestation of quantum coherence in a condensed matter system. As one of the most remarkable phenomena in condensed matter physics discovered in the 20th century, the localization problem is an indispensable part of the theory of the quantum Hall effects and rivals superconductivity in its significance as a manifestation of quantum coherence at a macroscopic scale. The present volume, written by some of the leading experts in the field, is intended to highlight some of the recent progress in the field of localization, with particular emphasis on the effect of interactions on quantum coherence. The chapters are written in textbook style and should serve as a reliable and thorough introduction for advanced students or researchers already working in the field of mesoscopic physics.
This book provides a comprehensive introduction to the physics of the photovoltaic cell. It is suitable for undergraduates, graduate students, and researchers new to the field. It covers: basic physics of semiconductors in photovoltaic devices; physical models of solar cell operation; characteristics and design of common types of solar cell; and approaches to increasing solar cell efficiency. The text explains the terms and concepts of solar cell device physics and shows the reader how to formulate and solve relevant physical problems. Exercises and worked solutions are included.
This book provides a comprehensive treatment of the ideas and applications of supersymmetry.
The author presents in detail a new non-perturbative approach to the fermionic many-body problem, improving the bosonization technique and generalizing it to dimensions d1 via functional integration and Hubbard--Stratonovich transformations. In Part I he clearly illustrates the approximations and limitations inherent in higher-dimensional bosonization and derives the precise relation with diagrammatic perturbation theory. He shows how the non-linear terms in the energy dispersion can be systematically included into bosonization in arbitrary d, so that in d1 the curvature of the Fermi surface can be taken into account. Part II gives applications to problems of physical interest. The book addresses researchers and graduate students in theoretical condensed matter physics.
The proceedings of Localisation 2011, a satellite conference of the 26th International Conference on Low Temperature Physics (LT26), comprise both invited and contributed papers that discuss the latest progress on localisation phenomena. The main topics include quantum transport in disordered systems (Anderson localisation, effects of interactions on localisation, AndersonOCoMott transition, mesoscopics), the superconductorOCoinsulator transition, quantum Hall effects (fractional and integer), topological insulators, graphene, dynamical localisation, heavy fermions (Kondo effect, Kondo lattice, effects of disorder), and many body localisation (spin-glass, Coulomb glass). The volume is also dedicated to Professor Bernard Coqblin, former CNRS Directeur de Recherche and a Honorary Chairman of the AMS-APCTP Conference Localisation 2011, whose contribution to condensed matter theory will always be remembered.
This volume is a collection of papers from the fourth meeting of the International Symposium on Mesoscopic Superconductivity and Spintronics held at NTT Atsugi, Japan. Research in these fields has advanced a great deal since the previous meeting, largely because these fields have drawn much attention from the viewpoint of new quantum phenomena and quantum information technology. Mesoscopic superconductivity has been developed in new fields, such as a ferromagnet/superconductor junction, the proximity effect in unconventional superconductors, macroscopic quantum tunneling in high-Tc superconductors, quantum modulation of superconducting junctions and superconducting quantum bits. The book also covers transport and spins in nano-scale semiconductor structures such as quantum dots and wires, quantum interference and coherence and order in exotic materials, and some papers on quantum algorithm. This book adequately provides an overview of recent progress in mesoscopic superconductivity.
This volume is a collection of papers from the fourth meeting of the International Symposium on Mesoscopic Superconductivity and Spintronics held at NTT Atsugi, Japan. Research in these fields has advanced a great deal since the previous meeting, largely because these fields have drawn much attention from the viewpoint of new quantum phenomena and quantum information technology. Mesoscopic superconductivity has been developed in new fields, such as a ferromagnet/superconductor junction, the proximity effect in unconventional superconductors, macroscopic quantum tunneling in high-Tc superconductors, quantum modulation of superconducting junctions and superconducting quantum bits. The book also covers transport and spins in nano-scale semiconductor structures such as quantum dots and wires, quantum interference and coherence and order in exotic materials, and some papers on quantum algorithm. This book adequately provides an overview of recent progress in mesoscopic superconductivity.
Stefan Baerisch applies a combination of feature modelling and code generation, for which he uses a model-driven approach, in order to facilitate the design of tests by non-programmers. This combination of modelling and code generation allows for a more integrated and more efficient testing process.