You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Logic and Philosophy of Mathematics in the Early Husserl focuses on the first ten years of Edmund Husserl’s work, from the publication of his Philosophy of Arithmetic (1891) to that of his Logical Investigations (1900/01), and aims to precisely locate his early work in the fields of logic, philosophy of logic and philosophy of mathematics. Unlike most phenomenologists, the author refrains from reading Husserl’s early work as a more or less immature sketch of claims consolidated only in his later phenomenology, and unlike the majority of historians of logic she emphasizes the systematic strength and the originality of Husserl’s logico-mathematical work. The book attempts to reconstruct ...
This edited work presents contemporary mathematical practice in the foundational mathematical theories, in particular set theory and the univalent foundations. It shares the work of significant scholars across the disciplines of mathematics, philosophy and computer science. Readers will discover systematic thought on criteria for a suitable foundation in mathematics and philosophical reflections around the mathematical perspectives. The volume is divided into three sections, the first two of which focus on the two most prominent candidate theories for a foundation of mathematics. Readers may trace current research in set theory, which has widely been assumed to serve as a framework for found...
The New Yearbook for Phenomenology and Phenomenological Philosophy provides an annual international forum for phenomenological research in the spirit of Husserl's groundbreaking work and the extension of this work by such figures as Scheler, Heidegger, Sartre, Levinas, Merleau-Ponty and Gadamer.
In a fragment entitled Elementa Nova Matheseos Universalis (1683?) Leibniz writes “the mathesis [...] shall deliver the method through which things that are conceivable can be exactly determined”; in another fragment he takes the mathesis to be “the science of all things that are conceivable.” Leibniz considers all mathematical disciplines as branches of the mathesis and conceives the mathesis as a general science of forms applicable not only to magnitudes but to every object that exists in our imagination, i.e. that is possible at least in principle. As a general science of forms the mathesis investigates possible relations between “arbitrary objects” (“objets quelconques”)....
Essays on Husserl’s Logic and Philosophy of Mathematics sets out to fill up a lacuna in the present research on Husserl by presenting a precise account of Husserl’s work in the field of logic, of the philosophy of logic and of the philosophy of mathematics. The aim is to provide an in-depth reconstruction and analysis of the discussion between Husserl and his most important interlocutors, and to clarify pivotal ideas of Husserl’s by considering their reception and elaboration by some of his disciples and followers, such as Oskar Becker and Jacob Klein, as well as their influence on some of the most significant logicians and mathematicians of the past century, such as Luitzen E. J. Brouwer, Rudolf Carnap, Kurt Gödel and Hermann Weyl. Most of the papers consider Husserl and another scholar – e.g. Leibniz, Kant, Bolzano, Brentano, Cantor, Frege – and trace out and contextualize lines of influence, points of contact, and points of disagreement. Each essay is written by an expert of the field, and the volume includes contributions both from the analytical tradition and from the phenomenological one.
During Edmund Husserl’s lifetime, modern logic and mathematics rapidly developed toward their current outlook and Husserl’s writings can be fruitfully compared and contrasted with both 19th century figures (Boole, Schröder, Weierstrass) as well as the 20th century characters (Heyting, Zermelo, Gödel). Besides the more historical studies, the internal ones on Husserl alone and the external ones attempting to clarify his role in the more general context of the developing mathematics and logic, Husserl’s phenomenology offers also a systematically rich but little researched area of investigation. This volume aims to establish the starting point for the development, evaluation and appraisal of the phenomenology of mathematics. It gathers the contributions of the main scholars of this emerging field into one publication for the first time. Combining both historical and systematic studies from various angles, the volume charts answers to the question "What kind of philosophy of mathematics is phenomenology?"
The majority of histories of nineteenth-century philosophy overlook Bernard Bolzano of Prague (1781-1848), a systematic philosopher-mathematician whose contributions extend across the entire range of philosophy. This book, the first of its kind to be published in English, gives a detailed and comprehensive introduction to Bolzano's life and work.
Volume XXII Special Issue 1: Celebrating Wilhelm Schapp, In Geschichten verstrickt Special Issue 2: Theodor Conrad and the early phenomenological tradition Aim and Scope: The New Yearbook for Phenomenology and Phenomenological Philosophy provides an annual international forum for phenomenological research in the spirit of Husserl’s groundbreaking work and the extension of this work by such figures as Reinach, Scheler, Stein, Hering, Heidegger, Sartre, Levinas, Merleau-Ponty, Gadamer, and others. Contributors: Theodor Conrad, Francesca D’Alessandris, Johannes Daubert, Alexis Delamare, Neal DeRoo, Daniele De Santis, Karen Joisten, Emanuele Mariani, Ronny Miron, Daniele Nuccilli, Gianfranco Pecchinenda, Margaret Stark, Hamit Taieb, and Andrij Wachtel Submissions: Manuscripts, prepared for blind review, should be submitted to the Editors (daniele.desantis@ff.cuni.cz) electronically via e-mail attachments.
Husserl and Mathematics explains the development of Husserl's phenomenological method in the context of his engagement in modern mathematics and its foundations. Drawing on his correspondence and other written sources, Mirja Hartimo details Husserl's knowledge of a wide range of perspectives on the foundations of mathematics, including those of Hilbert, Brouwer and Weyl, as well as his awareness of the new developments in the subject during the 1930s. Hartimo examines how Husserl's philosophical views responded to these changes, and offers a pluralistic and open-ended picture of Husserl's phenomenology of mathematics. Her study shows Husserl's phenomenology to be a method capable of both shedding light on and internally criticizing scientific practices and concepts.