You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Metal chelators are emerging as versatile tool with many medical applications. Their versatility allows them to be used in chelation therapy for treating diseases caused by toxic and heavy metal poisoning, chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. In addition, metal chelators can also be applied as contrast agents in MRI scanning. Metal Chelation in Medicine provides a clear and timely perspective on the role of chelating agents in the management of metal intoxications and storage diseases. Written by leaders in the field of chelators, this publicatio...
Proceedings of the Ninth International Symposium held in Vienna, Austria, September 6-12, 1997
Part A.: Overviews of biological inorganic chemistry : 1. Bioinorganic chemistry and the biogeochemical cycles -- 2. Metal ions and proteins: binding, stability, and folding -- 3. Special cofactors and metal clusters -- 4. Transport and storage of metal ions in biology -- 5. Biominerals and biomineralization -- 6. Metals in medicine. -- Part B.: Metal ion containing biological systems : 1. Metal ion transport and storage -- 2. Hydrolytic chemistry -- 3. Electron transfer, respiration, and photosynthesis -- 4. Oxygen metabolism -- 5. Hydrogen, carbon, and sulfur metabolism -- 6. Metalloenzymes with radical intermediates -- 7. Metal ion receptors and signaling. -- Cell biology, biochemistry, and evolution: Tutorial I. -- Fundamentals of coordination chemistry: Tutorial II.
The first of a two volume set, Volume 12 provides a long-awaited compilation of NMR theory to paramagnetic molecules. International experts report the latest developments in NMR methodology as applied to strongly relaxed and shifted resonances, detail the theoretical aspects of paramagnetic shift and relaxation, and discuss the interpretive bases of these molecular properties in relation to the structure and function of various paramagnetic molecules.
MILS-15 provides an up-to-date review of the metalloenzymes involved in the activation, production, and conversion of molecular oxygen as well as the functionalization of the chemically inert gases methane and ammonia. Found either in aerobes (humans, animals, plants, microorganisms) or in anaerobes (so-called “impossible bacteria”) these enzymes employ preferentially iron and copper at their active sites, in order to conserve energy by redox-driven proton pumps, to convert methane to methanol, or ammonia to hydroxylamine or other compounds. When it comes to the light-driven production of molecular oxygen, the tetranuclear manganese cluster of photosystem II must be regarded as the key p...
Chapter 10 focuses on the interaction of CN- with enzymes containing vanadium, manganese, non-heme iron, and zinc, and the inhibiting properties of this ligand, allowing its use as a probe. The reaction mechanism of the molybdenum hydroxylase xanthine oxidoreductase is revisited in Chapter 11; previously a molybdenum-carbon bond was postulated but now proof is presented against its formation. The terminating Chapter 12 reviews briefly the most popular computational approaches employed in theoretical studies of bioorganometallic species by providing detailed examples.
In this brief, Vladimir Uversky discusses the paradigm-shifting phenomenon of intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs). Beginning with an introduction to the concept of protein intrinsic disorder, Uversky then goes on to describe the peculiar amino acid sequences of IDPs, their structural heterogeneity, typical functions and disorder-based binding modes. In the final sections, Uversky discusses IDPs in human diseases and as potential drug targets. This volume provides a snapshot to researchers entering the field as well as providing a current overview for more experienced scientists in related areas.
This book covers the bioinorganic chemistry of molybdenum and tungsten enzymes and the physicochemical methods that are used to investigate their structure and function.
Metallomics and the Cell provides in an authoritative and timely manner in 16 stimulating chapters, written by 37 internationally recognized experts from 9 nations, and supported by more than 3000 references, several tables, and 110 illustrations, mostly in color, a most up-to-date view of the "metallomes" which, as defined in the "omics" world, describe the entire set of biomolecules that interact with or are affected by each metal ion. The most relevant tools for visualizing metal ions in the cell and the most suitable bioinformatic tools for browsing genomes to identify metal-binding proteins are also presented. Thus, MILS-12 is of relevance for structural and systems biology, inorganic biological chemistry, genetics, medicine, diagnostics, as well as teaching, etc.
It is now clearly established that some proteins or protein regions are devoid of any stable secondary and/or tertiary structure under physiological conditions, but still possess fundamental biological functions. These intrinsically disordered proteins (IDPs) or regions (IDRs) have peculiar features due to their plasticity such as the capacity to bind their biological targets with high specificity and low affinity, and the possibility of interaction with numerous partners. A correlation between intrinsic disorder and various human diseases such as cancer, diabetes, amyloidoses and neurodegenerative diseases is now evident, highlighting the great importance of the topic. In this volume, we have collected recent high-quality research about IDPs and human diseases. We have selected nine papers which deal with a wide range of topics, from neurodegenerative disease to cancer, from IDR-mediated interactions to bioinformatics tools, all related to IDP peculiar features. Recent advances in the IDPs/IDRs issue are here presented, contributing to the progress of knowledge of the intrinsic disorder field in human disease.