You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The author develops the effective-mass theory of excitons in low-dimensional semiconductors and describes numerical methods for calculating the optical absorption including Coulomb interaction, geometry, and external fields. The theory is applied to Fano resonances in low-dimensional semiconductors and the Zener breakdown in superlattices. Comparing theoretical results with experiments, the book is essentially self-contained; it is a hands-on approach with detailed derivations, worked examples, illustrative figures, and computer programs. The book is clearly structured and will be valuable as an advanced-level self-study or course book for graduate students, lecturers, and researchers.
An international team of experts describes the optical and electronic properties of semiconductors and semiconductor nanostructures at picosecond and femtosecond time scales. The contributions cover the latest research on a wide range of topics. In particular they include novel experimental techniques for studying and characterizing nanostructure materials. The contributions are written in a tutorial way so that not only researchers in the field but also researchers and graduate students outside the field can benefit.
There are many books in the market devoted to the review of certain fields. This book is different from those in that authors not only provide reviews of the fields but also present their own important contributions to the fields in a tutorial way. As a result, researchers who are already in the field of ultrafast dynamics in semicon ductors and its device applications as well as researchers and graduate students just entering the field will benefit from it. This book is made up of recent new developments in the field of ultrafast dynamics in semiconductors. It consists of nine chapters. Chapter 1 reviews a mi croscopic many-body theory which allows one to compute the linear and non-linear o...
None
Proceedings of a September 1996 meeting, in sections on quantum films and superlattices, quantum wires, and quantum dots. Coverage includes basic physics aspects, novel technology and material fabrication tools, characterization methods, and new devices, with special attention to quantum wire and quantum dot lasers. Specific topics include inelastic light scattering by electrons in low-dimensional semiconductors, band-gap renormalization in quasi-one-dimensional systems, conductance in nanowires, and fabrication of quantum dots for semiconductor lasers with confined electrons and photons. Annotation copyrighted by Book News, Inc., Portland, OR
None